These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 23632463)
1. Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting. Cowan AJ; Leng W; Barnes PR; Klug DR; Durrant JR Phys Chem Chem Phys; 2013 Jun; 15(22):8772-8. PubMed ID: 23632463 [TBL] [Abstract][Full Text] [Related]
2. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214 [TBL] [Abstract][Full Text] [Related]
3. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods. Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962 [TBL] [Abstract][Full Text] [Related]
4. Band structure engineering of TiO2 nanowires by n-p codoping for enhanced visible-light photoelectrochemical water-splitting. Zhang D; Yang M Phys Chem Chem Phys; 2013 Nov; 15(42):18523-9. PubMed ID: 24072357 [TBL] [Abstract][Full Text] [Related]
5. Near-IR light-sensitized voltaic conversion system using nanocrystalline TiO2 film by Zn chlorophyll derivative aggregate. Amao Y; Yamada Y Langmuir; 2005 Mar; 21(7):3008-12. PubMed ID: 15779978 [TBL] [Abstract][Full Text] [Related]
6. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation. Wang G; Xiao X; Li W; Lin Z; Zhao Z; Chen C; Wang C; Li Y; Huang X; Miao L; Jiang C; Huang Y; Duan X Nano Lett; 2015 Jul; 15(7):4692-8. PubMed ID: 26052643 [TBL] [Abstract][Full Text] [Related]
7. Ultrafast carrier dynamics in nanostructures for solar fuels. Baxter JB; Richter C; Schmuttenmaer CA Annu Rev Phys Chem; 2014; 65():423-47. PubMed ID: 24423371 [TBL] [Abstract][Full Text] [Related]
8. Mesoporous TiO(2): comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. Hartmann P; Lee DK; Smarsly BM; Janek J ACS Nano; 2010 Jun; 4(6):3147-54. PubMed ID: 20486697 [TBL] [Abstract][Full Text] [Related]
9. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy. He W; Yang Y; Wang L; Yang J; Xiang X; Yan D; Li F ChemSusChem; 2015 May; 8(9):1568-76. PubMed ID: 25711390 [TBL] [Abstract][Full Text] [Related]
10. Water oxidation at hematite photoelectrodes: the role of surface states. Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953 [TBL] [Abstract][Full Text] [Related]
11. One-dimensional and (001) facetted nanostructured TiO2 photoanodes for dye-sensitized solar cells. Lin H; Wang X; Hao F Chimia (Aarau); 2013; 67(3):136-41. PubMed ID: 23574952 [TBL] [Abstract][Full Text] [Related]
12. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924 [TBL] [Abstract][Full Text] [Related]
13. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Das C; Roy P; Yang M; Jha H; Schmuki P Nanoscale; 2011 Aug; 3(8):3094-6. PubMed ID: 21761039 [TBL] [Abstract][Full Text] [Related]
14. Photoelectrocatalytic study and scaling up of titanium dioxide electrodes for wastewater treatment. Pablos C; van Grieken R; Marugán J; Adán C; Osuna M; Palma J Water Sci Technol; 2013; 68(5):999-1003. PubMed ID: 24037149 [TBL] [Abstract][Full Text] [Related]
15. WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment. Reyes-Gil KR; Robinson DB ACS Appl Mater Interfaces; 2013 Dec; 5(23):12400-10. PubMed ID: 24195676 [TBL] [Abstract][Full Text] [Related]
16. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures. Erwin WR; Coppola A; Zarick HF; Arora P; Miller KJ; Bardhan R Nanoscale; 2014 Nov; 6(21):12626-34. PubMed ID: 25188374 [TBL] [Abstract][Full Text] [Related]
17. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Wang G; Ling Y; Li Y Nanoscale; 2012 Nov; 4(21):6682-91. PubMed ID: 23026891 [TBL] [Abstract][Full Text] [Related]
18. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes. Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058 [TBL] [Abstract][Full Text] [Related]
19. Theoretical Verification of Photoelectrochemical Water Oxidation Using Nanocrystalline TiO2 Electrodes. Yanagida S; Yanagisawa S; Yamashita K; Jono R; Segawa H Molecules; 2015 May; 20(6):9732-44. PubMed ID: 26023936 [TBL] [Abstract][Full Text] [Related]
20. Solid-state photoelectrochemical cell with TiO Xu K; Chatzitakis A; Norby T Photochem Photobiol Sci; 2017 Jan; 16(1):10-16. PubMed ID: 27602784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]