These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 236327)

  • 61. Enhancement of the production of 1,25-dihydroxyvitamin D3 in chick kidney mitochondria by an extramitochondrial factor.
    Henry HL; Amdahl LD
    J Steroid Biochem; 1984 Feb; 20(2):645-9. PubMed ID: 6546774
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Direct control by calcium of 25-hydroxycholecalciferol-1-hydroxylase activity in chick kidney mitochondria.
    Suda T; Horiuchi N; Sasaki S; Ogata E; Ezawa I
    Biochem Biophys Res Commun; 1973 Sep; 54(2):512-8. PubMed ID: 4756783
    [No Abstract]   [Full Text] [Related]  

  • 63. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone.
    Fraser DR; Kodicek E
    Nat New Biol; 1973 Feb; 241(110):163-6. PubMed ID: 4512577
    [No Abstract]   [Full Text] [Related]  

  • 64. Vitamin D metabolism: physiological regulation in egg-laying Japanese quail.
    Kenny AD
    Am J Physiol; 1976 Jun; 230(6):1609-15. PubMed ID: 937550
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Opposing actions of methylxanthines and dibutyryl cyclic AMP on 1,25 dihydroxyvitamin D3 production and calcium fluxes in isolated chick renal tubules.
    Taft JL; French M; Danks JA; Larkins RG
    Biochem Biophys Res Commun; 1984 May; 121(1):355-63. PubMed ID: 6329199
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The renal mitochondrial metabolism of 25-hydroxyvitamin D-3: a possible role for phospholipids.
    Cunningham NS; Lee BS; Henry HL
    Biochim Biophys Acta; 1986 May; 881(3):480-8. PubMed ID: 3754466
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Salmon calcitonin-induced stimulation of 1 alpha,25-dihydroxycholecalciferol synthesis in rats involving a mechanism independent of adenosine 3':5'-cyclic monophosphate.
    Horiuchi N; Takahashi H; Matsumoto T; Takahashi N; Shimazawa E; Suda T; Ogata E
    Biochem J; 1979 Nov; 184(2):269-75. PubMed ID: 230832
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The regulation of vitamin D metabolism.
    MacIntyre I; Colston KW; Evans IM
    Calcif Tissue Res; 1976 Aug; 21 Suppl():136-41. PubMed ID: 182331
    [No Abstract]   [Full Text] [Related]  

  • 69. Influence of dietary calcium, phosphorus, and vitamin D on the conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 by kidney tubules of diphosphonate-treated quails.
    Trechsel U; Bonjour JP; Fleisch H
    Calcif Tissue Res; 1977 May; 22 Suppl():461-2. PubMed ID: 410488
    [No Abstract]   [Full Text] [Related]  

  • 70. Effect of diuretics on ion transport of kidney cortex mitochondria. III. Species difference in calcium accumulation and in ethacrynic acid effect.
    Gemba M; Yamamoto K
    Jpn J Pharmacol; 1975 Jun; 25(3):233-40. PubMed ID: 127057
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Intestinal phosphate transport and alkaline phosphatase activity in the chick.
    Birge SJ; Avioli RC
    Am J Physiol; 1981 Apr; 240(4):E384-90. PubMed ID: 7223882
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Extracellular pH modifies mitochondrial control of capacitative calcium entry in Jurkat cells.
    Zabłocki K; Szczepanowska J; Duszyński J
    J Biol Chem; 2005 Feb; 280(5):3516-21. PubMed ID: 15569668
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interactions of calcium with yeast mitochondria.
    Uribe S; Rangel P; Pardo JP
    Cell Calcium; 1992 Apr; 13(4):211-7. PubMed ID: 1586938
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Kidney mitochondrial metabolism of 25-hydroxyvitamin D3. Evaluation of in vitro cation modulation.
    Omdahl JL; Evan AP
    Arch Biochem Biophys; 1977 Nov; 184(1):179-88. PubMed ID: 921291
    [No Abstract]   [Full Text] [Related]  

  • 75. Mechanism of 25-hydroxyvitamin D3 24-hydroxylation: incorporation of oxygen-18 into the 24 position of 25-hydroxyvitamin D3.
    Madhok TC; Schnoes HK; DeLuca HF
    Biochemistry; 1977 May; 16(10):2142-5. PubMed ID: 861200
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of 1 alpha-hydroxyvitamin D3 and dietary calcium and phosphate on the aortic mineral content in rabbits with mild azotemia.
    Tvedegaard E; Ladefoged O; Nielsen M; Kamstrup O
    Nephron; 1983; 34(3):185-91. PubMed ID: 6877450
    [TBL] [Abstract][Full Text] [Related]  

  • 77. MITOCHONDRIAL SWELLING INDUCED BY CA2+ AND INORGANIC PHOSPHATE AND ITS RELATED PHENOMENA.
    UTSUMI K
    Acta Med Okayama (1952); 1964 Aug; 18():189-205. PubMed ID: 14245863
    [No Abstract]   [Full Text] [Related]  

  • 78. [Current conceptions on the biochemical mode of action of vitamin D (author's transl)].
    Norman AW
    MMW Munch Med Wochenschr; 1974 Sep; 116(37):1585-98. PubMed ID: 4374656
    [No Abstract]   [Full Text] [Related]  

  • 79. Circadian rhythm of 1 alpha,25-dihydroxyvitamin D3 production in egg-laying hens.
    Abe E; Tanabe R; Suda T; Yoshiki S
    Biochem Biophys Res Commun; 1979 May; 88(2):500-7. PubMed ID: 465051
    [No Abstract]   [Full Text] [Related]  

  • 80. The renal mitochondrial hydroxylases of the vitamin D3 endocrine complex: how are they regulated at the molecular level?
    Ghazarian JG
    J Bone Miner Res; 1990 Sep; 5(9):897-903. PubMed ID: 2177952
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.