BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 23633298)

  • 21. Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs.
    Sun D; Chen J; Wang Y; Li M; Rao D; Guo Y; Chen N; Zheng P; Sun J; Ma Y
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):203-208. PubMed ID: 30666532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification, repair and characterization of a benzyl alcohol-inducible promoter for recombinant proteins overexpression in Corynebacterium glutamicum.
    Liu X; Zhao Z; Dong G; Li Y; Peng F; Liu C; Zhang F; Linhardt RJ; Yang Y; Bai Z
    Enzyme Microb Technol; 2020 Nov; 141():109651. PubMed ID: 33051010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of Corynebacterium glutamicum promoters and their applications.
    Nešvera J; Holátko J; Pátek M
    Subcell Biochem; 2012; 64():203-21. PubMed ID: 23080252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum.
    Wei L; Xu N; Wang Y; Zhou W; Han G; Ma Y; Liu J
    Appl Microbiol Biotechnol; 2018 May; 102(9):4117-4130. PubMed ID: 29564525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum.
    Zhang Y; Shang X; Lai S; Zhang G; Liang Y; Wen T
    Appl Environ Microbiol; 2012 Aug; 78(16):5831-8. PubMed ID: 22685153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum.
    Ravasi P; Peiru S; Gramajo H; Menzella HG
    Microb Cell Fact; 2012 Nov; 11():147. PubMed ID: 23134565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass.
    Yim SS; Choi JW; Lee SH; Jeong KJ
    ACS Synth Biol; 2016 Apr; 5(4):334-43. PubMed ID: 26808593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum.
    Yim SS; An SJ; Choi JW; Ryu AJ; Jeong KJ
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):273-84. PubMed ID: 24380967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis.
    Knoppová M; Phensaijai M; Veselý M; Zemanová M; Nesvera J; Pátek M
    Curr Microbiol; 2007 Sep; 55(3):234-9. PubMed ID: 17657537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inducible Expression Systems Based on Xenogeneic Silencing and Counter-Silencing and Design of a Metabolic Toggle Switch.
    Wiechert J; Gätgens C; Wirtz A; Frunzke J
    ACS Synth Biol; 2020 Aug; 9(8):2023-2038. PubMed ID: 32649183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: fusion of lambda operator with promoters isolated from C. ammoniagenes.
    Park JU; Jo JH; Kim YJ; Chung SS; Lee JH; Lee HH
    J Microbiol Biotechnol; 2008 Apr; 18(4):639-47. PubMed ID: 18467855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolating promoters from Corynebacterium ammoniagenes ATCC 6871 and application in CoA synthesis.
    Hou Y; Chen S; Wang J; Liu G; Wu S; Tao Y
    BMC Biotechnol; 2019 Nov; 19(1):76. PubMed ID: 31718625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization.
    Kang MK; Lee J; Um Y; Lee TS; Bott M; Park SJ; Woo HM
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5991-6002. PubMed ID: 24706215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.
    Kim HT; Khang TU; Baritugo KA; Hyun SM; Kang KH; Jung SH; Song BK; Park K; Oh MK; Kim GB; Kim HU; Lee SY; Park SJ; Joo JC
    Metab Eng; 2019 Jan; 51():99-109. PubMed ID: 30144560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
    Pérez-García F; Peters-Wendisch P; Wendisch VF
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8075-90. PubMed ID: 27345060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of pOGOduet - An inducible, bicistronic vector for synthesis of recombinant proteins in Corynebacterium glutamicum.
    Goldbeck O; Seibold GM
    Plasmid; 2018 Jan; 95():11-15. PubMed ID: 29331350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse.
    Lee JY; Na YA; Kim E; Lee HS; Kim P
    J Microbiol Biotechnol; 2016 May; 26(5):807-22. PubMed ID: 26838341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum.
    Zhou LB; Zeng AP
    ACS Synth Biol; 2015 Dec; 4(12):1335-40. PubMed ID: 26300047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid.
    Song CW; Lee J; Ko YS; Lee SY
    Metab Eng; 2015 Jul; 30():121-129. PubMed ID: 26057003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.