These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 2363347)

  • 21. [Efferent auditory pathways and retroaction phenomena].
    Burgeat M
    JFORL J Fr Otorhinolaryngol Audiophonol Chir Maxillofac; 1972 Feb; 21(2):97-104. PubMed ID: 4261612
    [No Abstract]   [Full Text] [Related]  

  • 22. Suppression of ipsilateral auditory pathways increases with increasing task load in commissurotomy subjects.
    Pechstedt PH
    Bull Clin Neurosci; 1986; 51():73-6. PubMed ID: 3455246
    [No Abstract]   [Full Text] [Related]  

  • 23. [Physiology of the centrifugal auditory system].
    Pfalz RK
    Monatsschr Ohrenheilkd Laryngorhinol; 1966 Sep; 100(9):381-99. PubMed ID: 16114432
    [No Abstract]   [Full Text] [Related]  

  • 24. [Conception of the function of the central auditory pathways].
    Dunker E; Krämer B
    HNO; 1972 Dec; 20(12):351-62. PubMed ID: 4347282
    [No Abstract]   [Full Text] [Related]  

  • 25. Anticipation and motor control on repetitive tooth tapping produced by open-close jaw movements.
    Noguchi K; Fujii H; Yamabe Y; Tanaka M; Shimada A; Torisu T; Suenaga H
    J Oral Rehabil; 2008 Jan; 35(1):20-6. PubMed ID: 18190357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Unitary analysis of the neuronal activity of the median geniculate body in response to acoustic stimulation].
    de Ribaupierre F; toros A
    Bull Schweiz Akad Med Wiss; 1974 Jul; 30(1-3):118-23. PubMed ID: 4424445
    [No Abstract]   [Full Text] [Related]  

  • 27. Amplitude and phase dynamics associated with acoustically paced finger tapping.
    Boonstra TW; Daffertshofer A; Peper CE; Beek PJ
    Brain Res; 2006 Sep; 1109(1):60-9. PubMed ID: 16860292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Role of inhibitory interaction in the formation of an impulse reaction of the central auditory neurons to an acoustic signal].
    Vartanian IA
    Fiziol Zh SSSR Im I M Sechenova; 1973 Nov; 59(11):1683-91. PubMed ID: 4365706
    [No Abstract]   [Full Text] [Related]  

  • 29. [Evoked neuronal activity of the cat neostriatum following lesions of the afferent acoustic pathways].
    Cherkes VA; Gruzdev GM; Litvinova AN; Lukhanina EP; Velikaia RR
    Fiziol Zh (1978); 1983; 29(2):152-6. PubMed ID: 6840321
    [No Abstract]   [Full Text] [Related]  

  • 30. Interaction between the auditory evoked response and EEG alpha activity during a cognitive task.
    Maras L; Palejev G; Radii T
    Homeost Health Dis; 1991; 33(5-6):286. PubMed ID: 18265498
    [No Abstract]   [Full Text] [Related]  

  • 31. [Functional organization of the auditory system of tailless amphibia].
    Bibikov NG
    Usp Fiziol Nauk; 1987; 18(2):114-31. PubMed ID: 3300071
    [No Abstract]   [Full Text] [Related]  

  • 32. [Discriminating capacity of the auditory analyzer in the electrophysiological experiment].
    Veselý C; Wagner J
    Cesk Otolaryngol; 1974 Oct; 23(5):266-9. PubMed ID: 4375546
    [No Abstract]   [Full Text] [Related]  

  • 33. Differences in latencies and amplitudes of auditory brain stem responses in symmetrical areas of the scalp in healthy subjects.
    Petrek J; Gunka V; Stodůlka P
    Act Nerv Super (Praha); 1988 Sep; 30(3):235-8. PubMed ID: 3201914
    [No Abstract]   [Full Text] [Related]  

  • 34. Tapping in synchrony to auditory rhythms: effect of temporal structure on behavior and neural activity.
    Chen JL; Penhune VB; Zatorre RJ
    Ann N Y Acad Sci; 2005 Dec; 1060():400-3. PubMed ID: 16597792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasticity in representations of environmental sounds revealed by electrical neuroimaging.
    Murray MM; Camen C; Spierer L; Clarke S
    Neuroimage; 2008 Jan; 39(2):847-56. PubMed ID: 17950001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural mechanisms for spectral analysis in the auditory midbrain, thalamus, and cortex.
    Escabí MA; Read HL
    Int Rev Neurobiol; 2005; 70():207-52. PubMed ID: 16472636
    [No Abstract]   [Full Text] [Related]  

  • 37. Evoked potentials in sound localization: timing of activity along the auditory pathway.
    Pratt H; Polyakov A
    Electroencephalogr Clin Neurophysiol Suppl; 1999; 50():235-42. PubMed ID: 10689468
    [No Abstract]   [Full Text] [Related]  

  • 38. A study of crossed olivocochlear bundle on adaptation of auditory action potentials.
    Dayal VS
    Laryngoscope; 1972 Apr; 82(4):693-711. PubMed ID: 5023216
    [No Abstract]   [Full Text] [Related]  

  • 39. Dual task performance: effects of increasing difficulty on auditory ERPs and RTs.
    Ragazzoni A; Matà S; Grippo A; Pinto F
    Electroencephalogr Clin Neurophysiol Suppl; 1996; 46():253-60. PubMed ID: 9059800
    [No Abstract]   [Full Text] [Related]  

  • 40. Lateral differences in dynamics of latencies of a simple motor response to acoustic stimuli of increasing intensity.
    Vol'f NV; Tsvetovskii SB
    Hum Physiol; 1985; 11(6):411-4. PubMed ID: 3837746
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.