BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23633493)

  • 1. Regulation of FANCD2 by the mTOR pathway contributes to the resistance of cancer cells to DNA double-strand breaks.
    Shen C; Oswald D; Phelps D; Cam H; Pelloski CE; Pang Q; Houghton PJ
    Cancer Res; 2013 Jun; 73(11):3393-401. PubMed ID: 23633493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance.
    Ho GP; Margossian S; Taniguchi T; D'Andrea AD
    Mol Cell Biol; 2006 Sep; 26(18):7005-15. PubMed ID: 16943440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of arnicolide C as a novel chemosensitizer to suppress mTOR/E2F1/FANCD2 axis in non-small cell lung cancer.
    Chen YF; Pang YC; Wang HC; Wu PE; Chen ZJ; Huang D; Peng DL; Yan YM; Liu C; Wu LC; Fan XZ; Cheng YX; Liu YQ
    Br J Pharmacol; 2024 Apr; 181(8):1221-1237. PubMed ID: 37926864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RSF1 histone-remodelling factor facilitates DNA double-strand break repair by recruiting centromeric and Fanconi Anaemia proteins.
    Pessina F; Lowndes NF
    PLoS Biol; 2014 May; 12(5):e1001856. PubMed ID: 24800743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperation of the NEIL3 and Fanconi anemia/BRCA pathways in interstrand crosslink repair.
    Li N; Wang J; Wallace SS; Chen J; Zhou J; D'Andrea AD
    Nucleic Acids Res; 2020 Apr; 48(6):3014-3028. PubMed ID: 31980815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling of Interstrand Crosslink Proximal Replisomes Is Dependent on ATR, FANCM, and FANCD2.
    Huang J; Zhang J; Bellani MA; Pokharel D; Gichimu J; James RC; Gali H; Ling C; Yan Z; Xu D; Chen J; Meetei AR; Li L; Wang W; Seidman MM
    Cell Rep; 2019 May; 27(6):1794-1808.e5. PubMed ID: 31067464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STIM1 translocation to the nucleus protects cells from DNA damage.
    Sanchez-Lopez I; Orantos-Aguilera Y; Pozo-Guisado E; Alvarez-Barrientos A; Lilla S; Zanivan S; Lachaud C; Martin-Romero FJ
    Nucleic Acids Res; 2024 Mar; 52(5):2389-2415. PubMed ID: 38224453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mtor-Fanconi Anemia DNA Damage Repair Pathway in Cancer.
    Guo F
    J Oncobiomarkers; 2014; 2(2):. PubMed ID: 25621286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy.
    Wang Z; Huang Y; Zhang J
    Cell Mol Biol Lett; 2014 Jun; 19(2):233-42. PubMed ID: 24728800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mTORC1 and DNA-PKcs as novel molecular determinants of sensitivity to Chk1 inhibition.
    Massey AJ; Stephens P; Rawlinson R; McGurk L; Plummer R; Curtin NJ
    Mol Oncol; 2016 Jan; 10(1):101-12. PubMed ID: 26471831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of FANCD2 and FANCI monoubiquitination by their interaction and by DNA.
    Longerich S; Kwon Y; Tsai MS; Hlaing AS; Kupfer GM; Sung P
    Nucleic Acids Res; 2014 May; 42(9):5657-70. PubMed ID: 24623813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genetic and biochemical basis of FANCD2 monoubiquitination.
    Rajendra E; Oestergaard VH; Langevin F; Wang M; Dornan GL; Patel KJ; Passmore LA
    Mol Cell; 2014 Jun; 54(5):858-69. PubMed ID: 24905007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FANCD2 activates transcription of TAp63 and suppresses tumorigenesis.
    Park E; Kim H; Kim JM; Primack B; Vidal-Cardenas S; Xu Y; Price BD; Mills AA; D'Andrea AD
    Mol Cell; 2013 Jun; 50(6):908-18. PubMed ID: 23806336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mTOR Signaling in Growth, Metabolism, and Disease.
    Saxton RA; Sabatini DM
    Cell; 2017 Mar; 168(6):960-976. PubMed ID: 28283069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome instability footprint under rapamycin and hydroxyurea treatments.
    Li J; Stenberg S; Yue JX; Mikhalev E; Thompson D; Warringer J; Liti G
    PLoS Genet; 2023 Nov; 19(11):e1011012. PubMed ID: 37931001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiotherapy and radio-sensitization in H3
    Liu C; Kuang S; Wu L; Cheng Q; Gong X; Wu J; Zhang L
    CNS Neurosci Ther; 2023 Jul; 29(7):1721-1737. PubMed ID: 37157237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATM depletion induces proteasomal degradation of FANCD2 and sensitizes neuroblastoma cells to PARP inhibitors.
    Parvin S; Akter J; Takenobu H; Katai Y; Satoh S; Okada R; Haruta M; Mukae K; Wada T; Ohira M; Ando K; Kamijo T
    BMC Cancer; 2023 Apr; 23(1):313. PubMed ID: 37020276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OGG1 in the Kidney: Beyond Base Excision Repair.
    Zhao F; Zhu J; Shi L; Wu X
    Oxid Med Cell Longev; 2022; 2022():5774641. PubMed ID: 36620083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational Implications for Radiosensitizing Strategies in Rhabdomyosarcoma.
    Pomella S; Porrazzo A; Cassandri M; Camero S; Codenotti S; Milazzo L; Vulcano F; Barillari G; Cenci G; Marchese C; Fanzani A; Megiorni F; Rota R; Marampon F
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362070
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.