BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23633564)

  • 1. A new member of the 4-methylideneimidazole-5-one-containing aminomutase family from the enediyne kedarcidin biosynthetic pathway.
    Huang SX; Lohman JR; Huang T; Shen B
    Proc Natl Acad Sci U S A; 2013 May; 110(20):8069-74. PubMed ID: 23633564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of the 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis.
    Christenson SD; Wu W; Spies MA; Shen B; Toney MD
    Biochemistry; 2003 Nov; 42(43):12708-18. PubMed ID: 14580219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis.
    Christenson SD; Liu W; Toney MD; Shen B
    J Am Chem Soc; 2003 May; 125(20):6062-3. PubMed ID: 12785829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-methylideneimidazole-5-one-containing aminomutases in enediyne biosynthesis.
    Lohman JR; Shen B
    Methods Enzymol; 2012; 516():299-319. PubMed ID: 23034235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of L-tyrosine 2,3-aminomutase from the C-1027 enediyne antitumor antibiotic biosynthetic pathway.
    Christianson CV; Montavon TJ; Van Lanen SG; Shen B; Bruner SD
    Biochemistry; 2007 Jun; 46(24):7205-14. PubMed ID: 17516659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics.
    Lohman JR; Huang SX; Horsman GP; Dilfer PE; Huang T; Chen Y; Wendt-Pienkowski E; Shen B
    Mol Biosyst; 2013 Mar; 9(3):478-91. PubMed ID: 23360970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of the adenylation enzyme SgcC1 involved in the biosynthesis of the enediyne antitumor antibiotic C-1027.
    Van Lanen SG; Lin S; Dorrestein PC; Kelleher NL; Shen B
    J Biol Chem; 2006 Oct; 281(40):29633-40. PubMed ID: 16887797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of beta-amino acids incorporated in secondary metabolites.
    Cooke HA; Bruner SD
    Biopolymers; 2010 Sep; 93(9):802-10. PubMed ID: 20577998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of MIO-based aminomutases in beta-amino acid biosynthesis.
    Christianson CV; Montavon TJ; Festin GM; Cooke HA; Shen B; Bruner SD
    J Am Chem Soc; 2007 Dec; 129(51):15744-5. PubMed ID: 18052279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids.
    Turner NJ
    Curr Opin Chem Biol; 2011 Apr; 15(2):234-40. PubMed ID: 21131229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Which Residues of the Active Site and Loop Structure of a Tyrosine Aminomutase Define Its Mutase and Lyase Activities.
    Attanayake G; Walter T; Walker KD
    Biochemistry; 2018 Jun; 57(25):3503-3514. PubMed ID: 29757631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Tyrosine Aminomutase from Rice (Oryza sativa) Isomerizes (S)-α- to (R)-β-Tyrosine with Unique High Enantioselectivity and Retention of Configuration.
    Walter T; King Z; Walker KD
    Biochemistry; 2016 Jan; 55(1):1-4. PubMed ID: 26709535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regiospecific chlorination of (S)-beta-tyrosyl-S-carrier protein catalyzed by SgcC3 in the biosynthesis of the enediyne antitumor antibiotic C-1027.
    Lin S; Van Lanen SG; Shen B
    J Am Chem Soc; 2007 Oct; 129(41):12432-8. PubMed ID: 17887753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of the beta-amino acid moiety of the enediyne antitumor antibiotic C-1027 featuring beta-amino acyl-S-carrier protein intermediates.
    Van Lanen SG; Dorrestein PC; Christenson SD; Liu W; Ju J; Kelleher NL; Shen B
    J Am Chem Soc; 2005 Aug; 127(33):11594-5. PubMed ID: 16104723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the mechanism of aminomutase reaction: a case study of phenylalanine aminomutase by computational approach.
    Wang K; Hou Q; Liu Y
    J Mol Graph Model; 2013 Nov; 46():65-73. PubMed ID: 24149320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas fluorescens Strain R124 Encodes Three Different MIO Enzymes.
    Csuka P; Juhász V; Kohári S; Filip A; Varga A; Sátorhelyi P; Bencze LC; Barton H; Paizs C; Poppe L
    Chembiochem; 2018 Feb; 19(4):411-418. PubMed ID: 29193598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The proteolytic specificity of the natural enediyne-containing chromoproteins is unique to each chromoprotein.
    Zein N; Reiss P; Bernatowicz M; Bolgar M
    Chem Biol; 1995 Jul; 2(7):451-5. PubMed ID: 9383447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of additional members of the tyrosine aminomutase enzyme family and the mutational analysis of CmdF.
    Krug D; Müller R
    Chembiochem; 2009 Mar; 10(4):741-50. PubMed ID: 19222035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic synthesis of enantiopure alpha- and beta-amino acids by phenylalanine aminomutase-catalysed amination of cinnamic acid derivatives.
    Wu B; Szymanski W; Wietzes P; de Wildeman S; Poelarends GJ; Feringa BL; Janssen DB
    Chembiochem; 2009 Jan; 10(2):338-44. PubMed ID: 19123196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of mechanism-based inhibitors for the tyrosine aminomutase SgTAM.
    Montavon TJ; Christianson CV; Festin GM; Shen B; Bruner SD
    Bioorg Med Chem Lett; 2008 May; 18(10):3099-102. PubMed ID: 18078753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.