BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 23633941)

  • 21. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.
    Pecevski D; Maass W
    eNeuro; 2016; 3(2):. PubMed ID: 27419214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptic modifications driven by spike-timing-dependent plasticity in weakly coupled bursting neurons.
    Zhou JF; Yuan WJ; Chen D; Wang BH; Zhou Z; Boccaletti S; Wang Z
    Phys Rev E; 2019 Mar; 99(3-1):032419. PubMed ID: 30999534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delay-Induced Multistability and Loop Formation in Neuronal Networks with Spike-Timing-Dependent Plasticity.
    Madadi Asl M; Valizadeh A; Tass PA
    Sci Rep; 2018 Aug; 8(1):12068. PubMed ID: 30104713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral analysis of input spike trains by spike-timing-dependent plasticity.
    Gilson M; Fukai T; Burkitt AN
    PLoS Comput Biol; 2012; 8(7):e1002584. PubMed ID: 22792056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unsupervised learning of visual features through spike timing dependent plasticity.
    Masquelier T; Thorpe SJ
    PLoS Comput Biol; 2007 Feb; 3(2):e31. PubMed ID: 17305422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks.
    Madadi Asl M; Valizadeh A; Tass PA
    Chaos; 2018 Oct; 28(10):106308. PubMed ID: 30384625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Network Plasticity as Bayesian Inference.
    Kappel D; Habenschuss S; Legenstein R; Maass W
    PLoS Comput Biol; 2015 Nov; 11(11):e1004485. PubMed ID: 26545099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity.
    Masuda N; Kori H
    J Comput Neurosci; 2007 Jun; 22(3):327-45. PubMed ID: 17393292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.
    Bill J; Buesing L; Habenschuss S; Nessler B; Maass W; Legenstein R
    PLoS One; 2015; 10(8):e0134356. PubMed ID: 26284370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity.
    Urakubo H; Honda M; Froemke RC; Kuroda S
    J Neurosci; 2008 Mar; 28(13):3310-23. PubMed ID: 18367598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emergence of dynamic memory traces in cortical microcircuit models through STDP.
    Klampfl S; Maass W
    J Neurosci; 2013 Jul; 33(28):11515-29. PubMed ID: 23843522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic stability of temporally shifted spike-timing dependent plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2010 Nov; 6(11):e1000961. PubMed ID: 21079671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of spontaneous rhythmic activity and organization of pacemakers as memory traces by spike-timing-dependent synaptic plasticity in a hippocampal model.
    Yoshida M; Hayashi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011910. PubMed ID: 14995650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterosynaptic plasticity prevents runaway synaptic dynamics.
    Chen JY; Lonjers P; Lee C; Chistiakova M; Volgushev M; Bazhenov M
    J Neurosci; 2013 Oct; 33(40):15915-29. PubMed ID: 24089497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interplay between a phase response curve and spike-timing-dependent plasticity leading to wireless clustering.
    Câteau H; Kitano K; Fukai T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051909. PubMed ID: 18643104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.