These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 23633942)

  • 1. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.
    Coquel AS; Jacob JP; Primet M; Demarez A; Dimiccoli M; Julou T; Moisan L; Lindner AB; Berry H
    PLoS Comput Biol; 2013 Apr; 9(4):e1003038. PubMed ID: 23633942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli.
    Neeli-Venkata R; Martikainen A; Gupta A; Gonçalves N; Fonseca J; Ribeiro AS
    J Bacteriol; 2016 Jan; 198(6):898-906. PubMed ID: 26728194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased cytoplasm viscosity hampers aggregate polar segregation in Escherichia coli.
    Oliveira SM; Neeli-Venkata R; Goncalves NS; Santinha JA; Martins L; Tran H; Mäkelä J; Gupta A; Barandas M; Häkkinen A; Lloyd-Price J; Fonseca JM; Ribeiro AS
    Mol Microbiol; 2016 Feb; 99(4):686-99. PubMed ID: 26507787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic structure of E. coli cytoplasm: supramolecular complexes and cell aging impact spatial distribution and mobility of proteins.
    Linnik D; Maslov I; Punter CM; Poolman B
    Commun Biol; 2024 Apr; 7(1):508. PubMed ID: 38678067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polar Localization of the Serine Chemoreceptor of Escherichia coli Is Nucleoid Exclusion-Dependent.
    Neeli-Venkata R; Startceva S; Annila T; Ribeiro AS
    Biophys J; 2016 Dec; 111(11):2512-2522. PubMed ID: 27926852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo disassembly and reassembly of protein aggregates in Escherichia coli.
    Govers SK; Dutré P; Aertsen A
    J Bacteriol; 2014 Jul; 196(13):2325-32. PubMed ID: 24633872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing.
    Winkler J; Seybert A; König L; Pruggnaller S; Haselmann U; Sourjik V; Weiss M; Frangakis AS; Mogk A; Bukau B
    EMBO J; 2010 Mar; 29(5):910-23. PubMed ID: 20094032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding can account for RNase-sensitive constraint of bacterial nucleoid structure.
    Foley PL; Wilson DB; Shuler ML
    Biochem Biophys Res Commun; 2010 Apr; 395(1):42-7. PubMed ID: 20346349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subdiffraction-limit study of Kaede diffusion and spatial distribution in live Escherichia coli.
    Bakshi S; Bratton BP; Weisshaar JC
    Biophys J; 2011 Nov; 101(10):2535-44. PubMed ID: 22098753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size dependence of protein diffusion in the cytoplasm of Escherichia coli.
    Nenninger A; Mastroianni G; Mullineaux CW
    J Bacteriol; 2010 Sep; 192(18):4535-40. PubMed ID: 20581203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids.
    Cunha S; Woldringh CL; Odijk T
    J Struct Biol; 2001 Oct; 136(1):53-66. PubMed ID: 11858707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of diffusion in
    Bellotto N; Agudo-Canalejo J; Colin R; Golestanian R; Malengo G; Sourjik V
    Elife; 2022 Dec; 11():. PubMed ID: 36468683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation.
    Lindner AB; Madden R; Demarez A; Stewart EJ; Taddei F
    Proc Natl Acad Sci U S A; 2008 Feb; 105(8):3076-81. PubMed ID: 18287048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical Properties of Escherichia coli Cytoplasm in Stationary Phase by Superresolution Fluorescence Microscopy.
    Zhu Y; Mustafi M; Weisshaar JC
    mBio; 2020 Jun; 11(3):. PubMed ID: 32546611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency and Robustness of Processes Driven by Nucleoid Exclusion in Escherichia coli.
    Baptista I; Chauhan V; Almeida B; Kandavalli V; Ribeiro AS
    Adv Exp Med Biol; 2020; 1267():59-80. PubMed ID: 32894477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal Physics Modeling Reveals How Per-Ribosome Productivity Increases with Growth Rate in Escherichia coli.
    Maheshwari AJ; Sunol AM; Gonzalez E; Endy D; Zia RN
    mBio; 2023 Feb; 14(1):e0286522. PubMed ID: 36537810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm.
    McGuffee SR; Elcock AH
    PLoS Comput Biol; 2010 Mar; 6(3):e1000694. PubMed ID: 20221255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of compact spermidine nucleoids from Escherichia coli under crowded conditions: implications for in vivo nucleoid structure.
    Murphy LD; Zimmerman SB
    J Struct Biol; 1997 Aug; 119(3):336-46. PubMed ID: 9245771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver Ions Caused Faster Diffusive Dynamics of Histone-Like Nucleoid-Structuring Proteins in Live Bacteria.
    Sadoon AA; Khadka P; Freeland J; Gundampati RK; Manso RH; Ruiz M; Krishnamurthi VR; Thallapuranam SK; Chen J; Wang Y
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.