BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23635088)

  • 1. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism.
    Lee DS; Je JY
    J Agric Food Chem; 2013 Jul; 61(26):6574-9. PubMed ID: 23635088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane.
    Je JY; Kim SK
    J Agric Food Chem; 2006 Sep; 54(18):6629-33. PubMed ID: 16939319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan kills bacteria through cell membrane damage.
    Liu H; Du Y; Wang X; Sun L
    Int J Food Microbiol; 2004 Sep; 95(2):147-55. PubMed ID: 15282127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial and synergic effects of gallic acid-grafted-chitosan with β-lactams against methicillin-resistant Staphylococcus aureus (MRSA).
    Lee DS; Eom SH; Kim YM; Kim HS; Yim MJ; Lee SH; Kim DH; Je JY
    Can J Microbiol; 2014 Oct; 60(10):629-38. PubMed ID: 25216286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria.
    Liu X; Xia W; Jiang Q; Xu Y; Yu P
    J Biosci Bioeng; 2015 Sep; 120(3):335-9. PubMed ID: 25682520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial activity and mechanism of action of chlorogenic acid.
    Lou Z; Wang H; Zhu S; Ma C; Wang Z
    J Food Sci; 2011 Aug; 76(6):M398-403. PubMed ID: 22417510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial activity against foodborne Staphylococcus aureus and antioxidant capacity of various pure phenolic compounds.
    Rúa J; Fernández-Álvarez L; de Castro C; Del Valle P; de Arriaga D; García-Armesto MR
    Foodborne Pathog Dis; 2011 Jan; 8(1):149-57. PubMed ID: 21034269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria.
    Borges A; Ferreira C; Saavedra MJ; Simões M
    Microb Drug Resist; 2013 Aug; 19(4):256-65. PubMed ID: 23480526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and antimicrobial mechanism of ɛ-polylysine-chitosan conjugates through Maillard reaction.
    Liang C; Yuan F; Liu F; Wang Y; Gao Y
    Int J Biol Macromol; 2014 Sep; 70():427-34. PubMed ID: 25036605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3,6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism.
    Yan F; Dang Q; Liu C; Yan J; Wang T; Fan B; Cha D; Li X; Liang S; Zhang Z
    Carbohydr Polym; 2016 Sep; 149():102-11. PubMed ID: 27261735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial activity evaluation of quaternary chitin against Escherichia coli and Staphylococcus aureus.
    Huang J; Jiang H; Qiu M; Geng X; Yang R; Li J; Zhang C
    Int J Biol Macromol; 2013 Jan; 52():85-91. PubMed ID: 23107803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low molecular weight chitosans--preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli.
    Vishu Kumar AB; Varadaraj MC; Gowda LR; Tharanathan RN
    Biochim Biophys Acta; 2007 Apr; 1770(4):495-505. PubMed ID: 17240531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular weight and pH effects of aminoethyl modified chitosan on antibacterial activity in vitro.
    Meng X; Xing R; Liu S; Yu H; Li K; Qin Y; Li P
    Int J Biol Macromol; 2012 May; 50(4):918-24. PubMed ID: 22342739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets.
    Xing K; Chen XG; Liu CS; Cha DS; Park HJ
    Int J Food Microbiol; 2009 Jun; 132(2-3):127-33. PubMed ID: 19439383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides.
    Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM
    J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material.
    Wiarachai O; Thongchul N; Kiatkamjornwong S; Hoven VP
    Colloids Surf B Biointerfaces; 2012 Apr; 92():121-9. PubMed ID: 22197736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides.
    Han FF; Gao YH; Luan C; Xie YG; Liu YF; Wang YZ
    J Dairy Sci; 2013 Jun; 96(6):3471-87. PubMed ID: 23567049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus.
    Eaton P; Fernandes JC; Pereira E; Pintado ME; Xavier Malcata F
    Ultramicroscopy; 2008 Sep; 108(10):1128-34. PubMed ID: 18556125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of the antimicrobial activity of bis(Nalpha-caproyl-L-arginine)-1,3-propanediamine dihydrochloride and chlorhexidine dihydrochloride against Staphylococcus aureus and Escherichia coli.
    Castillo JA; Clapés P; Infante MR; Comas J; Manresa A
    J Antimicrob Chemother; 2006 Apr; 57(4):691-8. PubMed ID: 16467368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.
    Borges A; Saavedra MJ; Simões M
    Biofouling; 2012; 28(7):755-67. PubMed ID: 22823343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.