BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23635107)

  • 1. Analytic second derivatives of the energy in the fragment molecular orbital method.
    Nakata H; Nagata T; Fedorov DG; Yokojima S; Kitaura K; Nakamura S
    J Chem Phys; 2013 Apr; 138(16):164103. PubMed ID: 23635107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method.
    Nakata H; Fedorov DG; Zahariev F; Schmidt MW; Kitaura K; Gordon MS; Nakamura S
    J Chem Phys; 2015 Mar; 142(12):124101. PubMed ID: 25833559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG; Nagata T; Kitaura K; Nakamura S
    J Chem Theory Comput; 2015 Jul; 11(7):3053-64. PubMed ID: 26575742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unrestricted Hartree-Fock based on the fragment molecular orbital method: energy and its analytic gradient.
    Nakata H; Fedorov DG; Nagata T; Yokojima S; Ogata K; Kitaura K; Nakamura S
    J Chem Phys; 2012 Jul; 137(4):044110. PubMed ID: 22852600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.
    Lesiuk M; Balawender R; Zachara J
    J Chem Phys; 2012 Jan; 136(3):034104. PubMed ID: 22280741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of Raman Spectra Using the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG; Yokojima S; Kitaura K; Nakamura S
    J Chem Theory Comput; 2014 Sep; 10(9):3689-98. PubMed ID: 26588514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and computational study on molecular structure and vibrational analysis of a modified biomolecule: 5-bromo-2'-deoxyuridine.
    Cırak C; Sert Y; Ucun F
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():406-14. PubMed ID: 22459894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm(-1) studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations.
    Tasinato N; Regini G; Stoppa P; Pietropolli Charmet A; Gambi A
    J Chem Phys; 2012 Jun; 136(21):214302. PubMed ID: 22697538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods.
    Steinmann C; Fedorov DG; Jensen JH
    J Phys Chem A; 2010 Aug; 114(33):8705-12. PubMed ID: 20446697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method.
    Fedorov DG; Jensen JH; Deka RC; Kitaura K
    J Phys Chem A; 2008 Nov; 112(46):11808-16. PubMed ID: 18942816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Ishimura K; Kitaura K
    J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations.
    Sert Y; Çırak Ç; Ucun F
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():248-55. PubMed ID: 23434551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.
    Komeiji Y; Ishikawa T; Mochizuki Y; Yamataka H; Nakano T
    J Comput Chem; 2009 Jan; 30(1):40-50. PubMed ID: 18504778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate ab initio and "hybrid" potential energy surfaces, intramolecular vibrational energies, and classical ir spectrum of the water dimer.
    Shank A; Wang Y; Kaledin A; Braams BJ; Bowman JM
    J Chem Phys; 2009 Apr; 130(14):144314. PubMed ID: 19368452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.