These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 23635124)
1. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. II. An efficient algorithm for matrix elements and analytical energy gradients in VBSCF method. Chen Z; Chen X; Wu W J Chem Phys; 2013 Apr; 138(16):164120. PubMed ID: 23635124 [TBL] [Abstract][Full Text] [Related]
2. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions. Chen Z; Chen X; Wu W J Chem Phys; 2013 Apr; 138(16):164119. PubMed ID: 23635123 [TBL] [Abstract][Full Text] [Related]
3. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. IV. The automatic implementation of the Hessian based VBSCF method. Chen X; Chen Z; Wu W J Chem Phys; 2014 Nov; 141(19):194113. PubMed ID: 25416880 [TBL] [Abstract][Full Text] [Related]
4. An efficient algorithm for complete active space valence bond self-consistent field calculation. Song J; Chen Z; Shaik S; Wu W J Comput Chem; 2013 Jan; 34(1):38-48. PubMed ID: 22961819 [TBL] [Abstract][Full Text] [Related]
5. An efficient algorithm for energy gradients and orbital optimization in valence bond theory. Song L; Song J; Mo Y; Wu W J Comput Chem; 2009 Feb; 30(3):399-406. PubMed ID: 18629879 [TBL] [Abstract][Full Text] [Related]
7. Valence bond perturbation theory. A valence bond method that incorporates perturbation theory. Chen Z; Song J; Shaik S; Hiberty PC; Wu W J Phys Chem A; 2009 Oct; 113(43):11560-9. PubMed ID: 19569658 [TBL] [Abstract][Full Text] [Related]
8. XMVB: a program for ab initio nonorthogonal valence bond computations. Song L; Mo Y; Zhang Q; Wu W J Comput Chem; 2005 Apr; 26(5):514-21. PubMed ID: 15704237 [TBL] [Abstract][Full Text] [Related]
9. On the efficiency of VBSCF algorithms, a comment on "An efficient algorithm for energy gradients and orbital optimization in valence bond theory". van Lenthe JH; Broer-Braam HB; Rashid Z J Comput Chem; 2012 Mar; 33(8):911-3; discussion 914-5. PubMed ID: 22278948 [TBL] [Abstract][Full Text] [Related]
10. A reactive bond orbital investigation of the Diels-Alder reaction between 1,3-butadiene and ethylene: Energy decomposition, state correlation diagram, and electron density analyses. Hirao H J Comput Chem; 2008 Jul; 29(9):1399-407. PubMed ID: 18213608 [TBL] [Abstract][Full Text] [Related]
11. Resonance and aromaticity: an ab initio valence bond approach. Rashid Z; van Lenthe JH; Havenith RW J Phys Chem A; 2012 May; 116(19):4778-88. PubMed ID: 22559175 [TBL] [Abstract][Full Text] [Related]
12. Effect of molecular-orbital rotations on ground-state energies in the parametric two-electron reduced density matrix method. Sand AM; Mazziotti DA J Chem Phys; 2013 Jun; 138(24):244102. PubMed ID: 23822222 [TBL] [Abstract][Full Text] [Related]
13. Spin-coupled theory for 'N electrons in M orbitals' active spaces. Karadakov PB; Cooper DL; Duke BJ; Li J J Phys Chem A; 2012 Jul; 116(26):7238-44. PubMed ID: 22690866 [TBL] [Abstract][Full Text] [Related]
14. Block-localized wavefunction (BLW) method at the density functional theory (DFT) level. Mo Y; Song L; Lin Y J Phys Chem A; 2007 Aug; 111(34):8291-301. PubMed ID: 17655207 [TBL] [Abstract][Full Text] [Related]
15. The application of cholesky decomposition in valence bond calculation. Gong X; Chen Z; Wu W J Comput Chem; 2016 Sep; 37(23):2157-62. PubMed ID: 27377531 [TBL] [Abstract][Full Text] [Related]
16. Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-Hermitian operators, and applications to polyenes. Chan GK; Van Voorhis T J Chem Phys; 2005 May; 122(20):204101. PubMed ID: 15945707 [TBL] [Abstract][Full Text] [Related]
17. Nonorthogonal orbital based n-body reduced density matrices and their applications to valence bond theory. III. Second-order perturbation theory using valence bond self-consistent field function as reference. Chen Z; Chen X; Ying F; Gu J; Zhang H; Wu W J Chem Phys; 2014 Oct; 141(13):134118. PubMed ID: 25296795 [TBL] [Abstract][Full Text] [Related]
18. Active-space two-electron reduced-density-matrix method: complete active-space calculations without diagonalization of the N-electron Hamiltonian. Gidofalvi G; Mazziotti DA J Chem Phys; 2008 Oct; 129(13):134108. PubMed ID: 19045079 [TBL] [Abstract][Full Text] [Related]
19. An efficient generalized polyelectron population analysis in orbital spaces: the hole-expansion methodology. Karafiloglou P J Chem Phys; 2009 Apr; 130(16):164103. PubMed ID: 19405557 [TBL] [Abstract][Full Text] [Related]
20. Equilibrium structures for butadiene and ethylene: compelling evidence for pi-electron delocalization in butadiene. Craig NC; Groner P; McKean DC J Phys Chem A; 2006 Jun; 110(23):7461-9. PubMed ID: 16759136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]