BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23635124)

  • 1. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. II. An efficient algorithm for matrix elements and analytical energy gradients in VBSCF method.
    Chen Z; Chen X; Wu W
    J Chem Phys; 2013 Apr; 138(16):164120. PubMed ID: 23635124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions.
    Chen Z; Chen X; Wu W
    J Chem Phys; 2013 Apr; 138(16):164119. PubMed ID: 23635123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. IV. The automatic implementation of the Hessian based VBSCF method.
    Chen X; Chen Z; Wu W
    J Chem Phys; 2014 Nov; 141(19):194113. PubMed ID: 25416880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient algorithm for complete active space valence bond self-consistent field calculation.
    Song J; Chen Z; Shaik S; Wu W
    J Comput Chem; 2013 Jan; 34(1):38-48. PubMed ID: 22961819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient algorithm for energy gradients and orbital optimization in valence bond theory.
    Song L; Song J; Mo Y; Wu W
    J Comput Chem; 2009 Feb; 30(3):399-406. PubMed ID: 18629879
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Chen Z; Song J; Chen X; Zhou C; Wu W
    Acc Chem Res; 2021 Oct; 54(20):3895-3905. PubMed ID: 34615356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valence bond perturbation theory. A valence bond method that incorporates perturbation theory.
    Chen Z; Song J; Shaik S; Hiberty PC; Wu W
    J Phys Chem A; 2009 Oct; 113(43):11560-9. PubMed ID: 19569658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XMVB: a program for ab initio nonorthogonal valence bond computations.
    Song L; Mo Y; Zhang Q; Wu W
    J Comput Chem; 2005 Apr; 26(5):514-21. PubMed ID: 15704237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the efficiency of VBSCF algorithms, a comment on "An efficient algorithm for energy gradients and orbital optimization in valence bond theory".
    van Lenthe JH; Broer-Braam HB; Rashid Z
    J Comput Chem; 2012 Mar; 33(8):911-3; discussion 914-5. PubMed ID: 22278948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reactive bond orbital investigation of the Diels-Alder reaction between 1,3-butadiene and ethylene: Energy decomposition, state correlation diagram, and electron density analyses.
    Hirao H
    J Comput Chem; 2008 Jul; 29(9):1399-407. PubMed ID: 18213608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance and aromaticity: an ab initio valence bond approach.
    Rashid Z; van Lenthe JH; Havenith RW
    J Phys Chem A; 2012 May; 116(19):4778-88. PubMed ID: 22559175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of molecular-orbital rotations on ground-state energies in the parametric two-electron reduced density matrix method.
    Sand AM; Mazziotti DA
    J Chem Phys; 2013 Jun; 138(24):244102. PubMed ID: 23822222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-coupled theory for 'N electrons in M orbitals' active spaces.
    Karadakov PB; Cooper DL; Duke BJ; Li J
    J Phys Chem A; 2012 Jul; 116(26):7238-44. PubMed ID: 22690866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Block-localized wavefunction (BLW) method at the density functional theory (DFT) level.
    Mo Y; Song L; Lin Y
    J Phys Chem A; 2007 Aug; 111(34):8291-301. PubMed ID: 17655207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of cholesky decomposition in valence bond calculation.
    Gong X; Chen Z; Wu W
    J Comput Chem; 2016 Sep; 37(23):2157-62. PubMed ID: 27377531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-Hermitian operators, and applications to polyenes.
    Chan GK; Van Voorhis T
    J Chem Phys; 2005 May; 122(20):204101. PubMed ID: 15945707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonorthogonal orbital based n-body reduced density matrices and their applications to valence bond theory. III. Second-order perturbation theory using valence bond self-consistent field function as reference.
    Chen Z; Chen X; Ying F; Gu J; Zhang H; Wu W
    J Chem Phys; 2014 Oct; 141(13):134118. PubMed ID: 25296795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active-space two-electron reduced-density-matrix method: complete active-space calculations without diagonalization of the N-electron Hamiltonian.
    Gidofalvi G; Mazziotti DA
    J Chem Phys; 2008 Oct; 129(13):134108. PubMed ID: 19045079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient generalized polyelectron population analysis in orbital spaces: the hole-expansion methodology.
    Karafiloglou P
    J Chem Phys; 2009 Apr; 130(16):164103. PubMed ID: 19405557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium structures for butadiene and ethylene: compelling evidence for pi-electron delocalization in butadiene.
    Craig NC; Groner P; McKean DC
    J Phys Chem A; 2006 Jun; 110(23):7461-9. PubMed ID: 16759136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.