These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

592 related articles for article (PubMed ID: 23635125)

  • 1. Dissipative time-dependent quantum transport theory.
    Zhang Y; Yam CY; Chen G
    J Chem Phys; 2013 Apr; 138(16):164121. PubMed ID: 23635125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics.
    Zhang Y; Yam C; Chen G
    J Chem Phys; 2015 Apr; 142(16):164101. PubMed ID: 25933746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Transport in a Silicon Nanowire FET Transistor: Hot Electrons and Local Power Dissipation.
    Martinez A; Barker JR
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge transport in carbon nanotubes: quantum effects of electron-phonon coupling.
    Roche S; Jiang J; Foa Torres LE; Saito R
    J Phys Condens Matter; 2007 May; 19(18):183203. PubMed ID: 21690981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-dependent electron transport through a quantum wire on a surface.
    Kwapiński T
    J Phys Condens Matter; 2012 Feb; 24(5):055302. PubMed ID: 22248492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A variational approach for dissipative quantum transport in a wide parameter space.
    Zhang Y; Yam C; Chen G
    J Chem Phys; 2015 Sep; 143(10):104112. PubMed ID: 26619516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon dynamics and electron-phonon coupling in pristine picene.
    Girlando A; Masino M; Bilotti I; Brillante A; Della Valle RG; Venuti E
    Phys Chem Chem Phys; 2012 Feb; 14(5):1694-9. PubMed ID: 22193510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing electron-phonon excitations in molecular junctions by quantum interference.
    Bessis C; Della Rocca ML; Barraud C; Martin P; Lacroix JC; Markussen T; Lafarge P
    Sci Rep; 2016 Feb; 6():20899. PubMed ID: 26864735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach.
    Jin J; Zheng X; Yan Y
    J Chem Phys; 2008 Jun; 128(23):234703. PubMed ID: 18570515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local measurement of the Eliashberg function of Pb islands: enhancement of electron-phonon coupling by quantum well states.
    Schackert M; Märkl T; Jandke J; Hölzer M; Ostanin S; Gross EK; Ernst A; Wulfhekel W
    Phys Rev Lett; 2015 Jan; 114(4):047002. PubMed ID: 25679904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to time-dependent transport through an interacting quantum dot within the Keldysh formalism.
    Vovchenko V; Anchishkin D; Azema J; Lombardo P; Hayn R; Daré AM
    J Phys Condens Matter; 2014 Jan; 26(1):015306. PubMed ID: 24292208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent quantum transport: an efficient method based on Liouville-von-Neumann equation for single-electron density matrix.
    Xie H; Jiang F; Tian H; Zheng X; Kwok Y; Chen S; Yam C; Yan Y; Chen G
    J Chem Phys; 2012 Jul; 137(4):044113. PubMed ID: 22852603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiclassical study of quantum coherence and isotope effects in ultrafast electron transfer reactions coupled to a proton and a phonon bath.
    Venkataraman C
    J Chem Phys; 2011 Nov; 135(20):204503. PubMed ID: 22128939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-diffusive electronic transport in a DNA single-strand chain with electron-phonon coupling.
    Sales MO; Lyra ML; de Moura FA; Fulco UL; Albuquerque EL
    J Phys Condens Matter; 2015 Jan; 27(3):035104. PubMed ID: 25564495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-phonon relaxation and excited electron distribution in zinc oxide and anatase.
    Zhukov VP; Tyuterev VG; Chulkov EV
    J Phys Condens Matter; 2012 Oct; 24(40):405802. PubMed ID: 22967967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-consistent quantum-kinetic theory for interacting drifting electrons and force-driven phonons in a 1D system.
    Lu X; Huang D
    J Phys Condens Matter; 2024 Feb; 36(20):. PubMed ID: 38324913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.