These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23635151)

  • 1. A maximum-entropy approach to the adiabatic freezing of a supercooled liquid.
    Prestipino S
    J Chem Phys; 2013 Apr; 138(16):164501. PubMed ID: 23635151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous freezing of supercooled water under isochoric and adiabatic conditions.
    Prestipino S; Giaquinta PV
    J Phys Chem B; 2013 Jul; 117(27):8189-95. PubMed ID: 23799647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions.
    Aliotta F; Giaquinta PV; Pochylski M; Ponterio RC; Prestipino S; Saija F; Vasi C
    J Chem Phys; 2013 May; 138(18):184504. PubMed ID: 23676053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the solidification of a supercooled liquid droplet lying on a surface.
    Tabakova S; Feuillebois F
    J Colloid Interface Sci; 2004 Apr; 272(1):225-34. PubMed ID: 14985041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are superhydrophobic surfaces best for icephobicity?
    Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D
    Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining landscape-based criteria for freezing of liquids.
    Chakraborty SN; Chakravarty C
    J Chem Phys; 2007 Jun; 126(24):244512. PubMed ID: 17614569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-freezing kinetics inside a droplet impacting on a cold surface.
    Kant P; Koldeweij RBJ; Harth K; van Limbeek MAJ; Lohse D
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2788-2794. PubMed ID: 31980522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces.
    Charpentier TV; Neville A; Millner P; Hewson RW; Morina A
    J Colloid Interface Sci; 2013 Mar; 394():539-44. PubMed ID: 23245630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Gibbs' approach in heterogeneous nucleation.
    Abyzov AS; Schmelzer JW
    J Chem Phys; 2013 Apr; 138(16):164504. PubMed ID: 23635154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solidification of supercooled water in the vicinity of a solid wall.
    Schremb M; Tropea C
    Phys Rev E; 2016 Nov; 94(5-1):052804. PubMed ID: 27967051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic van der Waals theory.
    Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036304. PubMed ID: 17500788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat of freezing for supercooled water: measurements at atmospheric pressure.
    Cantrell W; Kostinski A; Szedlak A; Johnson A
    J Phys Chem A; 2011 Jun; 115(23):5729-34. PubMed ID: 21087023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic van der waals theory of two-phase fluids in heat flow.
    Onuki A
    Phys Rev Lett; 2005 Feb; 94(5):054501. PubMed ID: 15783646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface.
    Surblys D; Leroy F; Yamaguchi Y; Müller-Plathe F
    J Chem Phys; 2018 Apr; 148(13):134707. PubMed ID: 29626889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold granular targets slow the bulk freezing of an impacting droplet.
    Zhao SC; Zhang HJ; Li Y
    Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2311930121. PubMed ID: 38175861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermolecular forces and the glass transition.
    Hall RW; Wolynes PG
    J Phys Chem B; 2008 Jan; 112(2):301-12. PubMed ID: 17990867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.