These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23635168)

  • 1. Computing the phase diagram of binary mixtures: a patchy particle case study.
    Rovigatti L; de las Heras D; Tavares JM; Telo da Gama MM; Sciortino F
    J Chem Phys; 2013 Apr; 138(16):164904. PubMed ID: 23635168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase diagram of a reentrant gel of patchy particles.
    Roldán-Vargas S; Smallenburg F; Kob W; Sciortino F
    J Chem Phys; 2013 Dec; 139(24):244910. PubMed ID: 24387399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and composition dependence of kinetics of phase separation in solid binary mixtures.
    Majumder S; Das SK
    Phys Chem Chem Phys; 2013 Aug; 15(31):13209-18. PubMed ID: 23824309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of patchy colloidal particles close to a surface: a Monte Carlo and density functional study.
    Gnan N; de las Heras D; Tavares JM; Telo da Gama MM; Sciortino F
    J Chem Phys; 2012 Aug; 137(8):084704. PubMed ID: 22938256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The isotropic-to-nematic phase transition in hard helices: theory and simulation.
    Frezza E; Ferrarini A; Kolli HB; Giacometti A; Cinacchi G
    J Chem Phys; 2013 Apr; 138(16):164906. PubMed ID: 23635170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patchy Particle Models to Understand Protein Phase Behavior.
    Gnan N; Sciortino F; Zaccarelli E
    Methods Mol Biol; 2019; 2039():187-208. PubMed ID: 31342428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-sensitive colloidal phase behavior induced by critical Casimir forces.
    Dang MT; Verde AV; Nguyen VD; Bolhuis PG; Schall P
    J Chem Phys; 2013 Sep; 139(9):094903. PubMed ID: 24028129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal nucleation in binary hard sphere mixtures: a Monte Carlo simulation study.
    Punnathanam S; Monson PA
    J Chem Phys; 2006 Jul; 125(2):24508. PubMed ID: 16848593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment.
    Mognetti BM; Virnau P; Yelash L; Paul W; Binder K; Müller M; MacDowell LG
    J Chem Phys; 2009 Jan; 130(4):044101. PubMed ID: 19191371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of melting times and critical droplet in kinetic Monte Carlo and molecular dynamics.
    Lemarchand CA
    J Chem Phys; 2013 Jan; 138(3):034506. PubMed ID: 23343284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of fluid-phase behavior using transition-matrix Monte Carlo: binary Lennard-Jones mixtures.
    Shen VK; Errington JR
    J Chem Phys; 2005 Feb; 122(6):064508. PubMed ID: 15740389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of two-phase molecular dynamics simulations to determine the phase behavior and critical point of propane molecular models.
    Patel S; Wilding WV; Rowley RL
    J Chem Phys; 2011 Jan; 134(2):024101. PubMed ID: 21241074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-size scaling study of the vapor-liquid critical properties of confined fluids: Crossover from three dimensions to two dimensions.
    Liu Y; Panagiotopoulos AZ; Debenedetti PG
    J Chem Phys; 2010 Apr; 132(14):144107. PubMed ID: 20405985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo cluster algorithm for fluid phase transitions in highly size-asymmetrical binary mixtures.
    Ashton DJ; Liu J; Luijten E; Wilding NB
    J Chem Phys; 2010 Nov; 133(19):194102. PubMed ID: 21090849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase diagram of self-assembled rigid rods on two-dimensional lattices: theory and Monte Carlo simulations.
    López LG; Linares DH; Ramirez-Pastor AJ; Cannas SA
    J Chem Phys; 2010 Oct; 133(13):134706. PubMed ID: 20942554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Monte Carlo versus Brownian dynamics: A comparison for self-diffusion and crystallization in colloidal fluids.
    Sanz E; Marenduzzo D
    J Chem Phys; 2010 May; 132(19):194102. PubMed ID: 20499946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of patchy particles into polymer chains: a parameter-free comparison between Wertheim theory and Monte Carlo simulation.
    Sciortino F; Bianchi E; Douglas JF; Tartaglia P
    J Chem Phys; 2007 May; 126(19):194903. PubMed ID: 17523836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization in suspensions of hard spheres: a Monte Carlo and molecular dynamics simulation study.
    Schilling T; Dorosz S; Schöpe HJ; Opletal G
    J Phys Condens Matter; 2011 May; 23(19):194120. PubMed ID: 21525557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.
    Dorsaz N; Foffi G
    J Phys Condens Matter; 2010 Mar; 22(10):104113. PubMed ID: 21389447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy particles under extreme confinement.
    Jonas HJ; Schall P; Bolhuis PG
    J Chem Phys; 2022 Sep; 157(9):094903. PubMed ID: 36075738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.