These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23635199)

  • 1. Piezoresponse force microscopy at sub-room temperatures.
    Lilienblum M; Hoffmann A; Soergel E; Becker P; Bohatý L; Fiebig M
    Rev Sci Instrum; 2013 Apr; 84(4):043703. PubMed ID: 23635199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of self-assembling isolated ferroelectric domains by scanning force microscopy.
    Lee B; Bae C; Kim SH; Shin H
    Ultramicroscopy; 2004 Aug; 100(3-4):339-46. PubMed ID: 15231327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of ferroelectric domain structure using angle-resolved piezoresponse force microscopy.
    Kim KL; Huber JE
    Rev Sci Instrum; 2015 Jan; 86(1):013705. PubMed ID: 25638088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy.
    Kalinin SV; Jesse S; Rodriguez BJ; Shin J; Baddorf AP; Lee HN; Borisevich A; Pennycook SJ
    Nanotechnology; 2006 Jul; 17(14):3400-11. PubMed ID: 19661582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Ferroelectric Characterization with Heterodyne Megasonic Piezoresponse Force Microscopy.
    Zeng Q; Wang H; Xiong Z; Huang Q; Lu W; Sun K; Fan Z; Zeng K
    Adv Sci (Weinh); 2021 Apr; 8(8):2003993. PubMed ID: 33898182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferroelectric domain in PMN-xPT single crystal studied by piezoresponse force microscopy and finite-element analysis.
    Wong KS; Wang B; Dai JY; Luo H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):952-6. PubMed ID: 18519194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of the background in piezoresponse force microscopy on the imaging of ferroelectric domain structures.
    Jungk T; Hoffmann A; Soergel E
    J Microsc; 2007 Jul; 227(Pt 1):72-8. PubMed ID: 17635660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations of ferroelectric polycrystalline bulks and thick films using piezoresponse force microscopy.
    Uršič H; Prah U
    Proc Math Phys Eng Sci; 2019 Mar; 475(2223):20180782. PubMed ID: 31007554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vector piezoresponse force microscopy.
    Kalinin SV; Rodriguez BJ; Jesse S; Shin J; Baddorf AP; Gupta P; Jain H; Williams DB; Gruverman A
    Microsc Microanal; 2006 Jun; 12(3):206-20. PubMed ID: 17481357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The growth mechanism and ferroelectric domains of diisopropylammonium bromide films synthesized via 12-crown-4 addition at room temperature.
    Gao K; Xu C; Cui Z; Liu C; Gao L; Li C; Wu D; Cai HL; Wu XS
    Phys Chem Chem Phys; 2016 Mar; 18(11):7626-31. PubMed ID: 26956668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Ferroelectric Behavior in Sub-10 nm Bismuth-Rich Aurivillius Films by Piezoresponse Force Microscopy.
    Keeney L; Colfer L; Schmidt M
    Microsc Microanal; 2021 Dec; ():1-11. PubMed ID: 35080489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution angle-resolved lateral piezoresponse force microscopy: Visualization of in-plane piezoresponse vectors.
    Chu K; Yang CH
    Rev Sci Instrum; 2018 Dec; 89(12):123704. PubMed ID: 30599567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-Induced Phase Transition Characteristics of [001]-Oriented 0.93Pb(Zn
    Wang H; Zeng K
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33578982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution of octyltriethoxysilane films on glass surfaces during annealing at elevated temperature.
    Sun C; Aston DE; Berg JC
    J Colloid Interface Sci; 2002 Apr; 248(1):96-102. PubMed ID: 16290508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic Contribution to the Photo-Assisted Piezoresponse Force Microscopy by Photo-Induced Surface Charge.
    Loo CC; Ng SS; Chang WS
    Microsc Microanal; 2022 May; ():1-5. PubMed ID: 35616223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-temperature bitumen stiffness and viscous paraffinic nano- and micro-domains by cryogenic AFM and PDM.
    Masson JF; Leblond V; Margeson J; Bundalo-Perc S
    J Microsc; 2007 Sep; 227(Pt 3):191-202. PubMed ID: 17760614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic behaviour in piezoresponse force microscopy.
    Jesse S; Baddorf AP; Kalinin SV
    Nanotechnology; 2006 Mar; 17(6):1615-28. PubMed ID: 26558568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of electrostatic interactions due to surface potential in piezoresponse force microscopy.
    Seol D; Kang S; Sun C; Kim Y
    Ultramicroscopy; 2019 Dec; 207():112839. PubMed ID: 31494481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the Fundamental Limitations of Nanoscale Ferroelectric Characterization: Non-Contact Heterodyne Electrostrain Force Microscopy.
    Zeng Q; Huang Q; Wang H; Li C; Fan Z; Chen D; Cheng Y; Zeng K
    Small Methods; 2021 Nov; 5(11):e2100639. PubMed ID: 34927968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model of frequency-modulated atomic force microscopy for interpretation of noncontact piezoresponse measurements.
    Labardi M
    Nanotechnology; 2020 Mar; 31(24):245705. PubMed ID: 32109904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.