These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23635228)

  • 1. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope.
    Wheeler JM; Michler J
    Rev Sci Instrum; 2013 Apr; 84(4):045103. PubMed ID: 23635228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800 °C.
    Conte M; Mohanty G; Schwiedrzik JJ; Wheeler JM; Bellaton B; Michler J; Randall NX
    Rev Sci Instrum; 2019 Apr; 90(4):045105. PubMed ID: 31042979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.
    Chirtoc M; Gibkes J; Wernhardt R; Pelzl J; Wieck A
    Rev Sci Instrum; 2008 Sep; 79(9):093703. PubMed ID: 19044421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques.
    Li X; Bhushan B; Takashima K; Baek CW; Kim YK
    Ultramicroscopy; 2003; 97(1-4):481-94. PubMed ID: 12801705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications.
    Elias KL; Daehn GS; Brantley WA; McGlumphy EA
    J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focused ion beam preparation of microbeams for in situ mechanical analysis of electroplated nanotwinned copper with probe type indenters.
    Robertson S; Doak S; Sun FL; Liu ZQ; Liu C; Zhou Z
    J Microsc; 2020 Sep; 279(3):212-216. PubMed ID: 31985812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in situ nanoindentation specimen holder for a high voltage transmission electron microscope.
    Wall MA; Dahmen U
    Microsc Res Tech; 1998 Aug; 42(4):248-54. PubMed ID: 9779829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a precision nanoindentation platform.
    Nowakowski BK; Smith DT; Smith ST; Correa LF; Cook RF
    Rev Sci Instrum; 2013 Jul; 84(7):075110. PubMed ID: 23902109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontact sub-10 nm temperature measurement in near-field laser heating.
    Yue Y; Chen X; Wang X
    ACS Nano; 2011 Jun; 5(6):4466-75. PubMed ID: 21557563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A heater-integrated scanning probe microscopy probe array with different tip radii for study of micro-nanosize effects on silicon-tip/polymer-film friction.
    Bao H; Li X
    Rev Sci Instrum; 2008 Mar; 79(3):033701. PubMed ID: 18377009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone.
    Paietta RC; Campbell SE; Ferguson VL
    J Biomech; 2011 Jan; 44(2):285-90. PubMed ID: 21092970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile atomic force microscope integrated with a scanning electron microscope.
    Kreith J; Strunz T; Fantner EJ; Fantner GE; Cordill MJ
    Rev Sci Instrum; 2017 May; 88(5):053704. PubMed ID: 28571420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in situ platform for the investigation of Raman shift in micro-scale silicon structures as a function of mechanical stress and temperature increase.
    Gan M; Tomar V
    Rev Sci Instrum; 2014 Jan; 85(1):013902. PubMed ID: 24517777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-induced twinning in InSb semiconductor during room temperature deformation.
    Mignerot F; Kedjar B; Bahsoun H; Thilly L
    Sci Rep; 2021 Oct; 11(1):19441. PubMed ID: 34599209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invited Article: Indenter materials for high temperature nanoindentation.
    Wheeler JM; Michler J
    Rev Sci Instrum; 2013 Oct; 84(10):101301. PubMed ID: 24182094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Behavior Investigation of 4H-SiC Single Crystal at the Micro-Nano Scale.
    Chai P; Li S; Li Y; Liang L; Yin X
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31963606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires.
    Cheng G; Zhang Y; Chang TH; Liu Q; Chen L; Lu WD; Zhu T; Zhu Y
    Nano Lett; 2019 Aug; 19(8):5327-5334. PubMed ID: 31314538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexagonal germanium formation at room temperature using controlled penetration depth nano-indentation.
    Dushaq G; Nayfeh A; Rasras M
    Sci Rep; 2019 Feb; 9(1):1593. PubMed ID: 30733519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Behavior of Undoped n-Type GaAs under the Indentation of Berkovich and Flat-Tip Indenters.
    Xu L; Kong L; Zhao H; Wang S; Liu S; Qian L
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30979061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.