BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23635274)

  • 1. Evaluating noise reduction techniques while considering anatomical noise in dual-energy contrast-enhanced mammography.
    Allec N; Abbaszadeh S; Scott CC; Karim KS; Lewin JM
    Med Phys; 2013 May; 40(5):051904. PubMed ID: 23635274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical noise in contrast-enhanced digital mammography. Part I. Single-energy imaging.
    Hill ML; Mainprize JG; Carton AK; Muller S; Ebrahimi M; Jong RA; Dromain C; Yaffe MJ
    Med Phys; 2013 May; 40(5):051910. PubMed ID: 23635280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of contrast-enhanced breast imaging: Analysis using a cascaded linear system model.
    Hu YH; Scaduto DA; Zhao W
    Med Phys; 2017 Jan; 44(1):43-56. PubMed ID: 28044312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical noise in contrast-enhanced digital mammography. Part II. Dual-energy imaging.
    Hill ML; Mainprize JG; Carton AK; Saab-Puong S; Iordache R; Muller S; Jong RA; Dromain C; Yaffe MJ
    Med Phys; 2013 Aug; 40(8):081907. PubMed ID: 23927321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Including the effect of motion artifacts in noise and performance analysis of dual-energy contrast-enhanced mammography.
    Allec N; Abbaszadeh S; Scott CC; Lewin JM; Karim KS
    Phys Med Biol; 2012 Dec; 57(24):8405-25. PubMed ID: 23202244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of anatomical noise on optimal beam quality in mammography.
    Cederström B; Fredenberg E
    Med Phys; 2014 Dec; 41(12):121903. PubMed ID: 25471963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascaded systems analysis of anatomic noise in digital mammography and dual-energy digital mammography.
    Tanguay J; Lalonde R; Bjarnason TA; Yang CJ
    Phys Med Biol; 2019 Oct; 64(21):215002. PubMed ID: 31470440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast-enhanced spectral mammography with a photon-counting detector.
    Fredenberg E; Hemmendorff M; Cederström B; Aslund M; Danielsson M
    Med Phys; 2010 May; 37(5):2017-29. PubMed ID: 20527535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of clinical full field digital mammography with the task specific system-model-based Fourier Hotelling observer (SMFHO) SNR.
    Liu H; Chakrabarti K; Kaczmarek RV; Benevides L; Gu S; Kyprianou IS
    Med Phys; 2014 May; 41(5):051907. PubMed ID: 24784386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascaded systems analysis of noise reduction algorithms in dual-energy imaging.
    Richard S; Siewerdsen JH
    Med Phys; 2008 Feb; 35(2):586-601. PubMed ID: 18383680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-energy digital mammography for calcification imaging: noise reduction techniques.
    Kappadath SC; Shaw CC
    Phys Med Biol; 2008 Oct; 53(19):5421-43. PubMed ID: 18765887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phantom study to evaluate contrast-medium-enhanced digital subtraction mammography with a full-field indirect-detection system.
    Palma BA; Rosado-Méndez I; Villaseñor Y; Brandan ME
    Med Phys; 2010 Feb; 37(2):577-89. PubMed ID: 20229866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a flat-panel based real time dual-energy system for cardiac imaging.
    Ducote JL; Xu T; Molloi S
    Med Phys; 2006 Jun; 33(6):1562-8. PubMed ID: 16872063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.
    Hu YH; Zhao W
    Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of silica-encapsulated silver nanoparticles as contrast agents intended for dual-energy mammography.
    Karunamuni R; Naha PC; Lau KC; Al-Zaki A; Popov AV; Delikatny EJ; Tsourkas A; Cormode DP; Maidment AD
    Eur Radiol; 2016 Sep; 26(9):3301-9. PubMed ID: 26910906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image quality, threshold contrast and mean glandular dose in CR mammography.
    Jakubiak RR; Gamba HR; Neves EB; Peixoto JE
    Phys Med Biol; 2013 Sep; 58(18):6565-83. PubMed ID: 24002695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.
    Saito M
    Med Phys; 2007 Nov; 34(11):4236-46. PubMed ID: 18072488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual-energy subtraction technique for microcalcification imaging in digital mammography--a signal-to-noise analysis.
    Lemacks MR; Kappadath SC; Shaw CC; Liu X; Whitman GJ
    Med Phys; 2002 Aug; 29(8):1739-51. PubMed ID: 12201421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-energy digital mammography utilizing stimulated phosphor computed radiography.
    Brettle DS; Cowen AR
    Phys Med Biol; 1994 Nov; 39(11):1989-2004. PubMed ID: 15560006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of signal to noise ratios from spatial and frequency domain formulations of nonprewhitening model observers in digital mammography.
    Sisini F; Zanca F; Marshall NW; Taibi A; Cardarelli P; Bosmans H
    Med Phys; 2012 Sep; 39(9):5652-63. PubMed ID: 22957631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.