BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23635284)

  • 21. Effect of glandularity on the detection of simulated cancers in planar, tomosynthesis, and synthetic 2D imaging of the breast using a hybrid virtual clinical trial.
    Mackenzie A; Kaur S; Thomson EL; Mitchell M; Elangovan P; Warren LM; Dance DR; Young KC
    Med Phys; 2021 Nov; 48(11):6859-6868. PubMed ID: 34496038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of Digital Breast Tomosynthesis as Replacement of Full-Field Digital Mammography Using an In Silico Imaging Trial.
    Badano A; Graff CG; Badal A; Sharma D; Zeng R; Samuelson FW; Glick SJ; Myers KJ
    JAMA Netw Open; 2018 Nov; 1(7):e185474. PubMed ID: 30646401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.
    Hu YH; Zhao W
    Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artifact reduction methods for truncated projections in iterative breast tomosynthesis reconstruction.
    Zhang Y; Chan HP; Sahiner B; Wei J; Zhou C; Hadjiiski LM
    J Comput Assist Tomogr; 2009; 33(3):426-35. PubMed ID: 19478639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning denoising of digital breast tomosynthesis: Observer performance study of the effect on detection of microcalcifications in breast phantom images.
    Chan HP; Helvie MA; Gao M; Hadjiiski L; Zhou C; Garver K; Klein KA; McLaughlin C; Oudsema R; Rahman WT; Roubidoux MA
    Med Phys; 2023 Oct; 50(10):6177-6189. PubMed ID: 37145996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of contrast-enhanced breast imaging: Analysis using a cascaded linear system model.
    Hu YH; Scaduto DA; Zhao W
    Med Phys; 2017 Jan; 44(1):43-56. PubMed ID: 28044312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of phosphor-based detector design for oblique x-ray incidence in digital breast tomosynthesis.
    Acciavatti RJ; Maidment AD
    Med Phys; 2011 Nov; 38(11):6188. PubMed ID: 22047384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T; Peppard H; Williams MB
    Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of masses in digital breast tomosynthesis using complementary information of simulated projection.
    Kim ST; Kim DH; Ro YM
    Med Phys; 2015 Dec; 42(12):7043-58. PubMed ID: 26632059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel approach to digital breast tomosynthesis for simultaneous acquisition of 2D and 3D images.
    Vecchio S; Albanese A; Vignoli P; Taibi A
    Eur Radiol; 2011 Jun; 21(6):1207-13. PubMed ID: 21193910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model-based deep CNN-regularized reconstruction for digital breast tomosynthesis with a task-based CNN image assessment approach.
    Gao M; Fessler JA; Chan HP
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37988758
    [No Abstract]   [Full Text] [Related]  

  • 32. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
    Seyyedi S; Cengiz K; Kamasak M; Yildirim I
    Comput Math Methods Med; 2013; 2013():250689. PubMed ID: 24371468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of system geometry and dose on the threshold detectable calcification diameter in 2D-mammography and digital breast tomosynthesis.
    Hadjipanteli A; Elangovan P; Mackenzie A; Looney PT; Wells K; Dance DR; Young KC
    Phys Med Biol; 2017 Feb; 62(3):858-877. PubMed ID: 28072582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anatomical background and generalized detectability in tomosynthesis and cone-beam CT.
    Gang GJ; Tward DJ; Lee J; Siewerdsen JH
    Med Phys; 2010 May; 37(5):1948-65. PubMed ID: 20527529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Task-based assessment of breast tomosynthesis: effect of acquisition parameters and quantum noise.
    Reiser I; Nishikawa RM
    Med Phys; 2010 Apr; 37(4):1591-600. PubMed ID: 20443480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lesion detectability in 2D-mammography and digital breast tomosynthesis using different targets and observers.
    Elangovan P; Mackenzie A; Dance DR; Young KC; Wells K
    Phys Med Biol; 2018 May; 63(9):095014. PubMed ID: 29637906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a constrained paired-view technique in iterative reconstruction for breast tomosynthesis.
    Wu G; Mainprize JG; Yaffe MJ
    Med Phys; 2013 Oct; 40(10):101901. PubMed ID: 24089903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Total variation minimization filter for DBT imaging.
    Mota AM; Matela N; Oliveira N; Almeida P
    Med Phys; 2015 Jun; 42(6):2827-36. PubMed ID: 26127035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of super-resolution and image acquisition on the detection of calcifications in digital breast tomosynthesis.
    Barufaldi B; Acciavatti RJ; Conant EF; Maidment ADA
    Eur Radiol; 2024 Jan; 34(1):193-203. PubMed ID: 37572187
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.