These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 23635322)
1. Human astrocytes derived from glial restricted progenitors support regeneration of the injured spinal cord. Haas C; Fischer I J Neurotrauma; 2013 Jun; 30(12):1035-52. PubMed ID: 23635322 [TBL] [Abstract][Full Text] [Related]
2. Transplantation of human glial restricted progenitors and derived astrocytes into a contusion model of spinal cord injury. Jin Y; Neuhuber B; Singh A; Bouyer J; Lepore A; Bonner J; Himes T; Campanelli JT; Fischer I J Neurotrauma; 2011 Apr; 28(4):579-94. PubMed ID: 21222572 [TBL] [Abstract][Full Text] [Related]
3. Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration. Haas C; Neuhuber B; Yamagami T; Rao M; Fischer I Exp Neurol; 2012 Feb; 233(2):717-32. PubMed ID: 22101004 [TBL] [Abstract][Full Text] [Related]
4. Axonal regeneration of different tracts following transplants of human glial restricted progenitors into the injured spinal cord in rats. Jin Y; Shumsky JS; Fischer I Brain Res; 2018 May; 1686():101-112. PubMed ID: 29408659 [TBL] [Abstract][Full Text] [Related]
5. Neuroectodermal Stem Cells Grafted into the Injured Spinal Cord Induce Both Axonal Regeneration and Morphological Restoration via Multiple Mechanisms. Pajer K; Bellák T; Redl H; Nógrádi A J Neurotrauma; 2019 Nov; 36(21):2977-2990. PubMed ID: 31111776 [TBL] [Abstract][Full Text] [Related]
6. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. Davies SJ; Shih CH; Noble M; Mayer-Proschel M; Davies JE; Proschel C PLoS One; 2011 Mar; 6(3):e17328. PubMed ID: 21407803 [TBL] [Abstract][Full Text] [Related]
7. Transplanting neural progenitors into a complete transection model of spinal cord injury. Medalha CC; Jin Y; Yamagami T; Haas C; Fischer I J Neurosci Res; 2014 May; 92(5):607-18. PubMed ID: 24452691 [TBL] [Abstract][Full Text] [Related]
8. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. Ishii K; Nakamura M; Dai H; Finn TP; Okano H; Toyama Y; Bregman BS J Neurosci Res; 2006 Dec; 84(8):1669-81. PubMed ID: 17044031 [TBL] [Abstract][Full Text] [Related]
9. Tanycytes transplanted into the adult rat spinal cord support the regeneration of lesioned axons. Prieto M; Chauvet N; Alonso G Exp Neurol; 2000 Jan; 161(1):27-37. PubMed ID: 10683271 [TBL] [Abstract][Full Text] [Related]
10. Astroglial-derived periostin promotes axonal regeneration after spinal cord injury. Shih CH; Lacagnina M; Leuer-Bisciotti K; Pröschel C J Neurosci; 2014 Feb; 34(7):2438-43. PubMed ID: 24523534 [TBL] [Abstract][Full Text] [Related]
12. Precursor cell biology and the development of astrocyte transplantation therapies: lessons from spinal cord injury. Noble M; Davies JE; Mayer-Pröschel M; Pröschel C; Davies SJ Neurotherapeutics; 2011 Oct; 8(4):677-93. PubMed ID: 21918888 [TBL] [Abstract][Full Text] [Related]
13. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Liang P; Jin LH; Liang T; Liu EZ; Zhao SG Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177 [TBL] [Abstract][Full Text] [Related]
14. Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration. Hill CE; Proschel C; Noble M; Mayer-Proschel M; Gensel JC; Beattie MS; Bresnahan JC Exp Neurol; 2004 Dec; 190(2):289-310. PubMed ID: 15530870 [TBL] [Abstract][Full Text] [Related]
15. Limitations in transplantation of astroglia-biomatrix bridges to stimulate corticospinal axon regrowth across large spinal lesion gaps. Deumens R; Koopmans GC; Honig WM; Maquet V; Jérôme R; Steinbusch HW; Joosten EA Neurosci Lett; 2006 Jun; 400(3):208-12. PubMed ID: 16530957 [TBL] [Abstract][Full Text] [Related]
16. Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Vroemen M; Aigner L; Winkler J; Weidner N Eur J Neurosci; 2003 Aug; 18(4):743-51. PubMed ID: 12925000 [TBL] [Abstract][Full Text] [Related]
17. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. Bonner JF; Connors TM; Silverman WF; Kowalski DP; Lemay MA; Fischer I J Neurosci; 2011 Mar; 31(12):4675-86. PubMed ID: 21430166 [TBL] [Abstract][Full Text] [Related]
18. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Pfeifer K; Vroemen M; Blesch A; Weidner N Eur J Neurosci; 2004 Oct; 20(7):1695-704. PubMed ID: 15379990 [TBL] [Abstract][Full Text] [Related]
19. Transplantation of D15A-expressing glial-restricted-precursor-derived astrocytes improves anatomical and locomotor recovery after spinal cord injury. Fan C; Zheng Y; Cheng X; Qi X; Bu P; Luo X; Kim DH; Cao Q Int J Biol Sci; 2013; 9(1):78-93. PubMed ID: 23289019 [TBL] [Abstract][Full Text] [Related]
20. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Lepore AC; Fischer I Exp Neurol; 2005 Jul; 194(1):230-42. PubMed ID: 15899260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]