These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 23635382)
21. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related]
22. Core-shell nanophosphor architecture: toward efficient energy transport in inorganic/organic hybrid solar cells. Li Q; Yuan Y; Chen Z; Jin X; Wei TH; Li Y; Qin Y; Sun W ACS Appl Mater Interfaces; 2014 Aug; 6(15):12798-807. PubMed ID: 24967836 [TBL] [Abstract][Full Text] [Related]
23. Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Que M; Que W; Yin X; Chen P; Yang Y; Hu J; Yu B; Du Y Nanoscale; 2016 Aug; 8(30):14432-7. PubMed ID: 27406678 [TBL] [Abstract][Full Text] [Related]
24. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. Zhang D; Downing JA; Knorr FJ; McHale JL J Phys Chem B; 2006 Nov; 110(43):21890-8. PubMed ID: 17064155 [TBL] [Abstract][Full Text] [Related]
25. Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. Lee SH; Abrams NM; Hoertz PG; Barber GD; Halaoui LI; Mallouk TE J Phys Chem B; 2008 Nov; 112(46):14415-21. PubMed ID: 18925776 [TBL] [Abstract][Full Text] [Related]
26. Effect of pH on the synthesis and properties of luminescent SiO2/calcium phosphate:Eu3+ core-shell nanoparticles. Dembski S; Milde M; Dyrba M; Schweizer S; Gellermann C; Klockenbring T Langmuir; 2011 Dec; 27(23):14025-32. PubMed ID: 21988231 [TBL] [Abstract][Full Text] [Related]
27. TiO2 nanotubes infiltrated with nanoparticles for dye sensitized solar cells. Pan X; Chen C; Zhu K; Fan Z Nanotechnology; 2011 Jun; 22(23):235402. PubMed ID: 21474874 [TBL] [Abstract][Full Text] [Related]
28. Highly Transparent and Wide Viewing Optical Films Using Embedded Hierarchical Double-Shell Layered Nanoparticles with Gradient Refractive Index Surface. Son I; Lee JH ACS Appl Mater Interfaces; 2020 Jul; 12(27):30862-30870. PubMed ID: 32539333 [TBL] [Abstract][Full Text] [Related]
29. TiO2 nanocrystals shell layer on highly conducting indium tin oxide nanowire for photovoltaic devices. Han HS; Kim JS; Kim DH; Han GS; Jung HS; Noh JH; Hong KS Nanoscale; 2013 Apr; 5(8):3520-6. PubMed ID: 23493975 [TBL] [Abstract][Full Text] [Related]
30. Enhanced light scattering from hollow polycrystalline TiO2 particles in a cellulose matrix. Nelson K; Deng Y Langmuir; 2008 Feb; 24(3):975-82. PubMed ID: 18179269 [TBL] [Abstract][Full Text] [Related]
31. 50 nm sized spherical TiO2 nanocrystals for highly efficient mesoscopic perovskite solar cells. Sung SD; Ojha DP; You JS; Lee J; Kim J; Lee WI Nanoscale; 2015 May; 7(19):8898-906. PubMed ID: 25916796 [TBL] [Abstract][Full Text] [Related]
32. Understanding the interplay between size, morphology and energy gap in photoactive TiO Morales-García Á; Macià Escatllar A; Illas F; Bromley ST Nanoscale; 2019 May; 11(18):9032-9041. PubMed ID: 31021336 [TBL] [Abstract][Full Text] [Related]
33. The Ag shell thickness effect of Au@Ag@SiO2 core-shell nanoparticles on the optoelectronic performance of dye sensitized solar cells. Wang Y; Zhai J; Song Y; He L Chem Commun (Camb); 2016 Feb; 52(11):2390-3. PubMed ID: 26732205 [TBL] [Abstract][Full Text] [Related]
34. Macroporous SnO2 synthesized via a template-assisted reflux process for efficient dye-sensitized solar cells. Li KN; Wang YF; Xu YF; Chen HY; Su CY; Kuang DB ACS Appl Mater Interfaces; 2013 Jun; 5(11):5105-11. PubMed ID: 23692298 [TBL] [Abstract][Full Text] [Related]
35. Influence of Shell Formation on Morphological Structure, Optical and Emission Intensity on Aqueous Dispersible NaYF4:Ce/Tb Nanoparticles. Ansari AA; Parchur AK; Kumar B; Rai SB J Fluoresc; 2016 Jul; 26(4):1151-9. PubMed ID: 27207570 [TBL] [Abstract][Full Text] [Related]
36. Visible light driven photoelectrochemical properties of Ti@TiO2 nanowire electrodes sensitized with core-shell Ag@Ag2S nanoparticles. Shan Z; Clayton D; Pan S; Archana PS; Gupta A J Phys Chem B; 2014 Dec; 118(49):14037-46. PubMed ID: 25009953 [TBL] [Abstract][Full Text] [Related]
37. Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes. Liu DW; Cheng IC; Chen JZ; Chen HW; Ho KC; Chiang CC Opt Express; 2012 Mar; 20 Suppl 2():A168-76. PubMed ID: 22418665 [TBL] [Abstract][Full Text] [Related]
38. Influence of Ag@SiO He Z; Zhang C; Meng R; Luo X; Chen M; Lu H; Yang Y Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33261123 [TBL] [Abstract][Full Text] [Related]
39. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436 [TBL] [Abstract][Full Text] [Related]
40. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. Hu L; Dai S; Weng J; Xiao S; Sui Y; Huang Y; Chen S; Kong F; Pan X; Liang L; Wang K J Phys Chem B; 2007 Jan; 111(2):358-62. PubMed ID: 17214486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]