These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23635599)

  • 21. The moveable handhold: a new paradigm to study visual contributions to the control of balance-recovery reactions.
    Cheng KC; McKay SM; King EC; Tung JY; Lee TA; Scovil CY; Maki BE
    Gait Posture; 2009 Feb; 29(2):339-42. PubMed ID: 18838270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perturbation-evoked electrodermal activity responds to instability, not just motor or sensory drives.
    Sibley KM; Mochizuki G; McIlroy WE
    Clin Neurophysiol; 2009 Mar; 120(3):619-25. PubMed ID: 19144566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arm reactions evoked by the initial exposure to a small balance perturbation: a pilot study.
    Corbeil P; Bloem BR; van Meel M; Maki BE
    Gait Posture; 2013 Feb; 37(2):300-3. PubMed ID: 22925376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Working memory maintenance of grasp-target information in the human posterior parietal cortex.
    Fiehler K; Bannert MM; Bischoff M; Blecker C; Stark R; Vaitl D; Franz VH; Rösler F
    Neuroimage; 2011 Feb; 54(3):2401-11. PubMed ID: 20932912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attentional demands associated with postural control depend on task difficulty and visual condition.
    Remaud A; Boyas S; Caron GA; Bilodeau M
    J Mot Behav; 2012; 44(5):329-40. PubMed ID: 22934664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The functional role of working memory in the (re-)planning and execution of grasping movements.
    Spiegel MA; Koester D; Schack T
    J Exp Psychol Hum Percept Perform; 2013 Oct; 39(5):1326-39. PubMed ID: 23339349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resolving conflicts in task demands during balance recovery: does holding an object inhibit compensatory grasping?
    Bateni H; Zecevic A; McIlroy WE; Maki BE
    Exp Brain Res; 2004 Jul; 157(1):49-58. PubMed ID: 14758453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Grasping remembered objects: exponential decay of the visual memory.
    Hesse C; Franz VH
    Vision Res; 2010 Dec; 50(24):2642-50. PubMed ID: 20692279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of set size effects in spatial updating: Evidence for offline updating.
    Hodgson E; Waller D
    J Exp Psychol Learn Mem Cogn; 2006 Jul; 32(4):854-66. PubMed ID: 16822153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unimodal and crossmodal working memory representations of visual and kinesthetic movement trajectories.
    Seemüller A; Fiehler K; Rösler F
    Acta Psychol (Amst); 2011 Jan; 136(1):52-9. PubMed ID: 20970103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cognitive and motor mechanisms underlying older adults' ability to divide attention while walking.
    Hall CD; Echt KV; Wolf SL; Rogers WA
    Phys Ther; 2011 Jul; 91(7):1039-50. PubMed ID: 21527384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of peripheral vision in rapid perturbation-evoked reach-to-grasp reactions.
    Akram SB; Miyasike-daSilva V; Van Ooteghem K; McIlroy WE
    Exp Brain Res; 2013 Sep; 229(4):609-19. PubMed ID: 23811736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Memory mechanisms in grasping.
    Hesse C; Franz VH
    Neuropsychologia; 2009 May; 47(6):1532-45. PubMed ID: 18775734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-related decay or interference-based forgetting in working memory?
    Portrat S; Barrouillet P; Camos V
    J Exp Psychol Learn Mem Cogn; 2008 Nov; 34(6):1561-4. PubMed ID: 18980415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptation of movement endpoints to perturbations of visual feedback.
    van den Dobbelsteen JJ; Brenner E; Smeets JB
    Exp Brain Res; 2003 Feb; 148(4):471-81. PubMed ID: 12582830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can we use peripheral vision to create a visuospatial map for compensatory reach-to-grasp reactions?
    Williams L; Miyasike-daSilva V; Staines WR; Prentice SD; McIlroy WE
    Exp Brain Res; 2022 Oct; 240(10):2739-2746. PubMed ID: 36107217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age-related changes in the capacity to select early-onset upper-limb reactions to either recover balance or protect against impact.
    Borrelli JR; Zabukovec J; Jones S; Junod CA; Maki BE
    Exp Gerontol; 2019 Oct; 125():110676. PubMed ID: 31377381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of speed and accuracy strategy on choice step execution in response to the flanker interference task.
    Uemura K; Oya T; Uchiyama Y
    Hum Mov Sci; 2013 Dec; 32(6):1393-403. PubMed ID: 24060225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shielding cognition from nociception with working memory.
    Legrain V; Crombez G; Plaghki L; Mouraux A
    Cortex; 2013; 49(7):1922-34. PubMed ID: 23026759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.