These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Gut hormones and appetite control. Wren AM; Bloom SR Gastroenterology; 2007 May; 132(6):2116-30. PubMed ID: 17498507 [TBL] [Abstract][Full Text] [Related]
25. Neuroendocrine control of food intake. Valassi E; Scacchi M; Cavagnini F Nutr Metab Cardiovasc Dis; 2008 Feb; 18(2):158-68. PubMed ID: 18061414 [TBL] [Abstract][Full Text] [Related]
26. Gastrointestinal satiety signals. Chaudhri OB; Field BC; Bloom SR Int J Obes (Lond); 2008 Dec; 32 Suppl 7():S28-31. PubMed ID: 19136988 [TBL] [Abstract][Full Text] [Related]
27. Test-meal palatability alters the effects of intragastric fat but not carbohydrate preloads on intake and rated appetite in healthy volunteers. Robinson TM; Gray RW; Yeomans MR; French SJ Physiol Behav; 2005 Feb; 84(2):193-203. PubMed ID: 15708771 [TBL] [Abstract][Full Text] [Related]
28. The gut-brain axis in appetite, satiety, food intake, and eating behavior: Insights from animal models and human studies. Clarke GS; Page AJ; Eldeghaidy S Pharmacol Res Perspect; 2024 Oct; 12(5):e70027. PubMed ID: 39417406 [TBL] [Abstract][Full Text] [Related]
29. A breakfast with alpha-lactalbumin, gelatin, or gelatin + TRP lowers energy intake at lunch compared with a breakfast with casein, soy, whey, or whey-GMP. Veldhorst MA; Nieuwenhuizen AG; Hochstenbach-Waelen A; Westerterp KR; Engelen MP; Brummer RJ; Deutz NE; Westerterp-Plantenga MS Clin Nutr; 2009 Apr; 28(2):147-55. PubMed ID: 19185957 [TBL] [Abstract][Full Text] [Related]
30. [Glucose homeostasis and gut-brain connection]. De Vadder F; Mithieux G Med Sci (Paris); 2015 Feb; 31(2):168-73. PubMed ID: 25744263 [TBL] [Abstract][Full Text] [Related]
31. Control of food intake by metabolism of fuels: a comparison across species. Allen MS; Bradford BJ Proc Nutr Soc; 2012 Aug; 71(3):401-9. PubMed ID: 22704548 [TBL] [Abstract][Full Text] [Related]
32. Stomach filling may mediate the influence of dietary energy density on the food intake of free-living humans. de Castro JM Physiol Behav; 2005 Sep; 86(1-2):32-45. PubMed ID: 16115659 [TBL] [Abstract][Full Text] [Related]
33. Proteins and satiety: implications for weight management. Soenen S; Westerterp-Plantenga MS Curr Opin Clin Nutr Metab Care; 2008 Nov; 11(6):747-51. PubMed ID: 18827579 [TBL] [Abstract][Full Text] [Related]
34. Gut peptide signaling in the controls of food intake. Moran TH Obesity (Silver Spring); 2006 Aug; 14 Suppl 5():250S-253S. PubMed ID: 17021376 [TBL] [Abstract][Full Text] [Related]
35. Protein, amino acids and the control of food intake. Tome D Br J Nutr; 2004 Aug; 92 Suppl 1():S27-30. PubMed ID: 15384319 [TBL] [Abstract][Full Text] [Related]
36. Neuro-hormonal control of food intake: basic mechanisms and clinical implications. Konturek PC; Konturek JW; Cześnikiewicz-Guzik M; Brzozowski T; Sito E; Konturek SJ J Physiol Pharmacol; 2005 Dec; 56 Suppl 6():5-25. PubMed ID: 16340035 [TBL] [Abstract][Full Text] [Related]
37. Brain-gut axis and its role in the control of food intake. Konturek SJ; Konturek JW; Pawlik T; Brzozowski T J Physiol Pharmacol; 2004 Mar; 55(1 Pt 2):137-54. PubMed ID: 15082874 [TBL] [Abstract][Full Text] [Related]
38. Dietary influences on peripheral hormones regulating energy intake: potential applications for weight management. Orr J; Davy B J Am Diet Assoc; 2005 Jul; 105(7):1115-24. PubMed ID: 15983531 [TBL] [Abstract][Full Text] [Related]
39. Sucrose modifies c-fos mRNA expression in the brain of rats maintained on feeding schedules. Mitra A; Lenglos C; Martin J; Mbende N; Gagné A; Timofeeva E Neuroscience; 2011 Sep; 192():459-74. PubMed ID: 21718761 [TBL] [Abstract][Full Text] [Related]