These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23636124)

  • 1. Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: an ab initio study.
    Wang Z; Su Q; Deng H
    Phys Chem Chem Phys; 2013 Jun; 15(22):8705-9. PubMed ID: 23636124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of protons on the Mg
    Ni D; Shi J; Xiong W; Zhong S; Xu B; Ouyang C
    Phys Chem Chem Phys; 2019 Apr; 21(14):7406-7411. PubMed ID: 30912552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layered tetragonal zinc chalcogenides for energy-related applications: from photocatalysts for water splitting to cathode materials for Li-ion batteries.
    Zhou J; Zhuang HL; Wang H
    Nanoscale; 2017 Nov; 9(44):17303-17311. PubMed ID: 29090699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Li Adsorption and Diffusion on MoS2 Zigzag Nanoribbons by Edge Effects: A Computational Study.
    Li Y; Wu D; Zhou Z; Cabrera CR; Chen Z
    J Phys Chem Lett; 2012 Aug; 3(16):2221-7. PubMed ID: 26295774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode.
    Zhou B; Shi H; Cao R; Zhang X; Jiang Z
    Phys Chem Chem Phys; 2014 Sep; 16(34):18578-85. PubMed ID: 25075459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost and facile one-pot synthesis of pure single-crystalline ε-Cu(0.95)V2O5 nanoribbons: high capacity cathode material for rechargeable Li-ion batteries.
    Hu W; Zhang XB; Cheng YL; Wu YM; Wang LM
    Chem Commun (Camb); 2011 May; 47(18):5250-2. PubMed ID: 21461425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation.
    Kim JK; Senthilkumar B; Sahgong SH; Kim JH; Chi M; Kim Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7025-32. PubMed ID: 25768692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries.
    Wang HE; Chen DS; Cai Y; Zhang RL; Xu JM; Deng Z; Zheng XF; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 418():74-80. PubMed ID: 24461820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.
    Afyon S; Krumeich F; Mensing C; Borgschulte A; Nesper R
    Sci Rep; 2014 Nov; 4():7113. PubMed ID: 25408200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reticular V
    Tian B; Tang W; Su C; Li Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):642-650. PubMed ID: 29256595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical study on the role of ammonium ions in the double-layered V
    Qu Z; Zhou B; Li B; Song Q; Cao YH; Jiang Z
    Phys Chem Chem Phys; 2021 Feb; 23(7):4187-4194. PubMed ID: 33586748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Multivalent Cation Insertion in Single- and Double-Layered Polymorphs of V
    Parija A; Prendergast D; Banerjee S
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23756-23765. PubMed ID: 28644001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binder-free V2O5 cathode for greener rechargeable aluminum battery.
    Wang H; Bai Y; Chen S; Luo X; Wu C; Wu F; Lu J; Amine K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):80-4. PubMed ID: 25521045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roadblocks in Cation Diffusion Pathways: Implications of Phase Boundaries for Li-Ion Diffusivity in an Intercalation Cathode Material.
    Luo Y; De Jesus LR; Andrews JL; Parija A; Fleer N; Robles DJ; Mukherjee PP; Banerjee S
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30901-30911. PubMed ID: 30106560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Li-ion adsorption and diffusion on two-dimensional silicon with defects: a first principles study.
    Setiadi J; Arnold MD; Ford MJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10690-5. PubMed ID: 24090433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Na diffusion by rational design of Si-based layered architectures.
    Kulish VV; Malyi OI; Ng MF; Chen Z; Manzhos S; Wu P
    Phys Chem Chem Phys; 2014 Mar; 16(9):4260-7. PubMed ID: 24452014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic Insights into FeF
    Yang Z; Zhao S; Pan Y; Wang X; Liu H; Wang Q; Zhang Z; Deng B; Guo C; Shi X
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):3142-3151. PubMed ID: 29286642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations.
    Longo RC; Kong FT; KC S; Park MS; Yoon J; Yeon DH; Park JH; Doo SG; Cho K
    Phys Chem Chem Phys; 2014 Jun; 16(23):11218-27. PubMed ID: 24776820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.