BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 23636170)

  • 21. Protein-bound uremic solutes: the forgotten toxins.
    Vanholder R; De Smet R; Lameire N
    Kidney Int Suppl; 2001 Feb; 78():S266-70. PubMed ID: 11169024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-bound uremic toxins - biological effects and impact on morbidity in patients with chronic kidney disease.
    Gomółka M; Niemczyk S
    Przegl Lek; 2017; 74(3):110-4. PubMed ID: 29694770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells.
    Edamatsu T; Fujieda A; Itoh Y
    PLoS One; 2018; 13(2):e0193342. PubMed ID: 29474405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production.
    Itoh Y; Ezawa A; Kikuchi K; Tsuruta Y; Niwa T
    Anal Bioanal Chem; 2012 Jun; 403(7):1841-50. PubMed ID: 22447217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-bound uremic retention solutes.
    Brunet P; Dou L; Cerini C; Berland Y
    Adv Ren Replace Ther; 2003 Oct; 10(4):310-20. PubMed ID: 14681860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction in protein-bound solutes unacceptable as marker of dialysis efficacy during alternate-night nocturnal hemodialysis.
    Meijers B; Toussaint ND; Meyer T; Bammens B; Verbeke K; Vanrenterghem Y; Kerr PG; Evenepoel P
    Am J Nephrol; 2011; 34(3):226-32. PubMed ID: 21791919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Release of uremic retention solutes from protein binding by hypertonic predilution hemodiafiltration.
    Böhringer F; Jankowski V; Gajjala PR; Zidek W; Jankowski J
    ASAIO J; 2015; 61(1):55-60. PubMed ID: 25419832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of uremic toxins in advanced chronic kidney disease patients on maintenance hemodialysis by LC-ESI-MS/MS.
    Ragi N; Pallerla P; Babi Reddy Gari AR; Lingampelly SS; Ketavarapu V; Addipilli R; Chirra N; Kantevari S; Yadla M; Sripadi P
    Metabolomics; 2023 Feb; 19(3):14. PubMed ID: 36826619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbiota-derived uremic retention solutes: perpetrators of altered nonrenal drug clearance in kidney disease.
    Prokopienko AJ; Nolin TD
    Expert Rev Clin Pharmacol; 2018 Jan; 11(1):71-82. PubMed ID: 28905671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolomic search for uremic toxins as indicators of the effect of an oral sorbent AST-120 by liquid chromatography/tandem mass spectrometry.
    Kikuchi K; Itoh Y; Tateoka R; Ezawa A; Murakami K; Niwa T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Nov; 878(29):2997-3002. PubMed ID: 20870466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High correlation between clearance of renal protein-bound uremic toxins (indoxyl sulfate and p-cresyl sulfate) and renal water-soluble toxins in peritoneal dialysis patients.
    Huang WH; Hung CC; Yang CW; Huang JY
    Ther Apher Dial; 2012 Aug; 16(4):361-7. PubMed ID: 22817125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and validation of a UHPLC-MS/MS method for measurement of a gut-derived uremic toxin panel in human serum: An application in patients with kidney disease.
    Prokopienko AJ; West RE; Stubbs JR; Nolin TD
    J Pharm Biomed Anal; 2019 Sep; 174():618-624. PubMed ID: 31276982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The removal of protein-bound solutes by dialysis.
    Meyer TW
    J Ren Nutr; 2012 Jan; 22(1):203-6. PubMed ID: 22200443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights into uremic toxicity.
    Raff AC; Meyer TW; Hostetter TH
    Curr Opin Nephrol Hypertens; 2008 Nov; 17(6):560-5. PubMed ID: 18941347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impaired Tubular Secretion of Organic Solutes in Acute Kidney Injury.
    O'Brien FJ; Mair RD; Plummer NS; Meyer TW; Sutherland SM; Sirich TL
    Kidney360; 2020 Aug; 1(8):724-730. PubMed ID: 35252876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients.
    Sirich TL; Plummer NS; Gardner CD; Hostetter TH; Meyer TW
    Clin J Am Soc Nephrol; 2014 Sep; 9(9):1603-10. PubMed ID: 25147155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two rapid, accurate liquid chromatography tandem mass spectrometry methods for the quantification of seven uremic toxins: An application for describing their accumulation kinetic profile in a context of acute kidney injury.
    André C; Bennis Y; Titeca-Beauport D; Caillard P; Cluet Y; Kamel S; Choukroun G; Maizel J; Liabeuf S; Bodeau S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Sep; 1152():122234. PubMed ID: 32615535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing the clearance of protein-bound solutes by addition of a sorbent to the dialysate.
    Meyer TW; Peattie JW; Miller JD; Dinh DC; Recht NS; Walther JL; Hostetter TH
    J Am Soc Nephrol; 2007 Mar; 18(3):868-74. PubMed ID: 17251385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extended Duration Nocturnal Hemodialysis and Changes in Plasma Metabolite Profiles.
    Kalim S; Wald R; Yan AT; Goldstein MB; Kiaii M; Xu D; Berg AH; Clish C; Thadhani R; Rhee EP; Perl J
    Clin J Am Soc Nephrol; 2018 Mar; 13(3):436-444. PubMed ID: 29444900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolomic analysis of uremic toxins by liquid chromatography/electrospray ionization-tandem mass spectrometry.
    Kikuchi K; Itoh Y; Tateoka R; Ezawa A; Murakami K; Niwa T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jun; 878(20):1662-8. PubMed ID: 20036201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.