These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 23636263)

  • 21. A structural motif in the C-terminal tail of slo1 confers carbon monoxide sensitivity to human BK Ca channels.
    Williams SE; Brazier SP; Baban N; Telezhkin V; Müller CT; Riccardi D; Kemp PJ
    Pflugers Arch; 2008 Jun; 456(3):561-72. PubMed ID: 18180950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of beta 1 and beta 2 subunits on BK channel activity.
    Orio P; Latorre R
    J Gen Physiol; 2005 Apr; 125(4):395-411. PubMed ID: 15767297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains.
    Yang H; Shi J; Zhang G; Yang J; Delaloye K; Cui J
    Nat Struct Mol Biol; 2008 Nov; 15(11):1152-9. PubMed ID: 18931675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanol modulates BKCa channels by acting as an adjuvant of calcium.
    Liu J; Vaithianathan T; Manivannan K; Parrill A; Dopico AM
    Mol Pharmacol; 2008 Sep; 74(3):628-40. PubMed ID: 18552122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel.
    Bukiya AN; Kuntamallappanavar G; Edwards J; Singh AK; Shivakumar B; Dopico AM
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9313-8. PubMed ID: 24927535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels.
    Santarelli LC; Wassef R; Heinemann SH; Hoshi T
    J Physiol; 2006 Mar; 571(Pt 2):329-48. PubMed ID: 16396928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The beta 1 subunit of L-type voltage-gated Ca2+ channels independently binds to and inhibits the gating of large-conductance Ca2+-activated K+ channels.
    Zou S; Jha S; Kim EY; Dryer SE
    Mol Pharmacol; 2008 Feb; 73(2):369-78. PubMed ID: 17989350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of voltage-and Ca2+-activated K+ channels in rat dorsal root ganglion neurons.
    Li W; Gao SB; Lv CX; Wu Y; Guo ZH; Ding JP; Xu T
    J Cell Physiol; 2007 Aug; 212(2):348-57. PubMed ID: 17523149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.
    Miranda P; Giraldez T; Holmgren M
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14055-14060. PubMed ID: 27872281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular structures of the human Slo1 K
    Tao X; MacKinnon R
    Elife; 2019 Dec; 8():. PubMed ID: 31815672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+-activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes.
    Kim EY; Alvarez-Baron CP; Dryer SE
    Mol Pharmacol; 2009 Mar; 75(3):466-77. PubMed ID: 19052171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional validation of Ca
    Kshatri AS; Gonzalez-Hernandez AJ; Giraldez T
    Biochim Biophys Acta Biomembr; 2018 Apr; 1860(4):943-952. PubMed ID: 28966112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage.
    Latorre R; Brauchi S
    Biol Res; 2006; 39(3):385-401. PubMed ID: 17106573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slo1 tail domains, but not the Ca2+ bowl, are required for the beta 1 subunit to increase the apparent Ca2+ sensitivity of BK channels.
    Qian X; Nimigean CM; Niu X; Moss BL; Magleby KL
    J Gen Physiol; 2002 Dec; 120(6):829-43. PubMed ID: 12451052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural determinants of phosphatidylinositol 4,5-bisphosphate (PIP2) regulation of BK channel activity through the RCK1 Ca2+ coordination site.
    Tang QY; Zhang Z; Meng XY; Cui M; Logothetis DE
    J Biol Chem; 2014 Jul; 289(27):18860-72. PubMed ID: 24778177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+-activated K channels in parotid acinar cells: The functional basis for the hyperpolarized activation of BK channels.
    Romanenko VG; Thompson J; Begenisich T
    Channels (Austin); 2010; 4(4):278-88. PubMed ID: 20519930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The NH2 terminus of RCK1 domain regulates Ca2+-dependent BK(Ca) channel gating.
    Krishnamoorthy G; Shi J; Sept D; Cui J
    J Gen Physiol; 2005 Sep; 126(3):227-41. PubMed ID: 16103277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intersubunit coupling in the pore of BK channels.
    Wu Y; Xiong Y; Wang S; Yi H; Li H; Pan N; Horrigan FT; Wu Y; Ding J
    J Biol Chem; 2009 Aug; 284(35):23353-63. PubMed ID: 19561088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of an electric-metal sensory experience in the Slo1 BK channel.
    Horrigan FT; Hoshi T
    Nat Struct Mol Biol; 2008 Nov; 15(11):1130-2. PubMed ID: 18985066
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.