These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 23636454)
1. RACK1 interacts with filamin-A to regulate plasma membrane levels of the cystic fibrosis transmembrane conductance regulator. Smith L; Litman P; Kohli E; Amick J; Page RC; Misra S; Liedtke CM Am J Physiol Cell Physiol; 2013 Jul; 305(1):C111-20. PubMed ID: 23636454 [TBL] [Abstract][Full Text] [Related]
2. Role of the scaffold protein RACK1 in apical expression of CFTR. Auerbach M; Liedtke CM Am J Physiol Cell Physiol; 2007 Jul; 293(1):C294-304. PubMed ID: 17409124 [TBL] [Abstract][Full Text] [Related]
3. Biochemical basis of the interaction between cystic fibrosis transmembrane conductance regulator and immunoglobulin-like repeats of filamin. Smith L; Page RC; Xu Z; Kohli E; Litman P; Nix JC; Ithychanda SS; Liu J; Qin J; Misra S; Liedtke CM J Biol Chem; 2010 May; 285(22):17166-76. PubMed ID: 20351101 [TBL] [Abstract][Full Text] [Related]
5. Protein kinase C epsilon-dependent regulation of cystic fibrosis transmembrane regulator involves binding to a receptor for activated C kinase (RACK1) and RACK1 binding to Na+/H+ exchange regulatory factor. Liedtke CM; Yun CH; Kyle N; Wang D J Biol Chem; 2002 Jun; 277(25):22925-33. PubMed ID: 11956211 [TBL] [Abstract][Full Text] [Related]
6. The N-terminus of the WD5 repeat of human RACK1 binds to airway epithelial NHERF1. Liedtke CM; Wang X Biochemistry; 2006 Aug; 45(34):10270-7. PubMed ID: 16922502 [TBL] [Abstract][Full Text] [Related]
7. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR. Thelin WR; Chen Y; Gentzsch M; Kreda SM; Sallee JL; Scarlett CO; Borchers CH; Jacobson K; Stutts MJ; Milgram SL J Clin Invest; 2007 Feb; 117(2):364-74. PubMed ID: 17235394 [TBL] [Abstract][Full Text] [Related]
8. Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells. Guerra L; Fanelli T; Favia M; Riccardi SM; Busco G; Cardone RA; Carrabino S; Weinman EJ; Reshkin SJ; Conese M; Casavola V J Biol Chem; 2005 Dec; 280(49):40925-33. PubMed ID: 16203733 [TBL] [Abstract][Full Text] [Related]
9. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner. Alshafie W; Chappe FG; Li M; Anini Y; Chappe VM Am J Physiol Cell Physiol; 2014 Jul; 307(1):C107-19. PubMed ID: 24788249 [TBL] [Abstract][Full Text] [Related]
10. The short apical membrane half-life of rescued {Delta}F508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of {Delta}F508-CFTR in polarized human airway epithelial cells. Swiatecka-Urban A; Brown A; Moreau-Marquis S; Renuka J; Coutermarsh B; Barnaby R; Karlson KH; Flotte TR; Fukuda M; Langford GM; Stanton BA J Biol Chem; 2005 Nov; 280(44):36762-72. PubMed ID: 16131493 [TBL] [Abstract][Full Text] [Related]
11. Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells. Favia M; Guerra L; Fanelli T; Cardone RA; Monterisi S; Di Sole F; Castellani S; Chen M; Seidler U; Reshkin SJ; Conese M; Casavola V Mol Biol Cell; 2010 Jan; 21(1):73-86. PubMed ID: 19889841 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis of filamin A-FilGAP interaction and its impairment in congenital disorders associated with filamin A mutations. Nakamura F; Heikkinen O; Pentikäinen OT; Osborn TM; Kasza KE; Weitz DA; Kupiainen O; Permi P; Kilpeläinen I; Ylänne J; Hartwig JH; Stossel TP PLoS One; 2009; 4(3):e4928. PubMed ID: 19293932 [TBL] [Abstract][Full Text] [Related]
13. Low temperature and chemical rescue affect molecular proximity of DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC). Qadri YJ; Cormet-Boyaka E; Rooj AK; Lee W; Parpura V; Fuller CM; Berdiev BK J Biol Chem; 2012 May; 287(20):16781-90. PubMed ID: 22442149 [TBL] [Abstract][Full Text] [Related]
14. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Li C; Naren AP Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089 [TBL] [Abstract][Full Text] [Related]
15. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR). Caohuy H; Yang Q; Eudy Y; Ha TA; Xu AE; Glover M; Frizzell RA; Jozwik C; Pollard HB J Biol Chem; 2014 Dec; 289(52):35953-68. PubMed ID: 25384981 [TBL] [Abstract][Full Text] [Related]
16. Protein kinase CK2, cystic fibrosis transmembrane conductance regulator, and the deltaF508 mutation: F508 deletion disrupts a kinase-binding site. Treharne KJ; Crawford RM; Xu Z; Chen JH; Best OG; Schulte EA; Gruenert DC; Wilson SM; Sheppard DN; Kunzelmann K; Mehta A J Biol Chem; 2007 Apr; 282(14):10804-13. PubMed ID: 17289674 [TBL] [Abstract][Full Text] [Related]
17. Regulation of cystic fibrosis transmembrane regulator trafficking and protein expression by a Rho family small GTPase TC10. Cheng J; Wang H; Guggino WB J Biol Chem; 2005 Feb; 280(5):3731-9. PubMed ID: 15546864 [TBL] [Abstract][Full Text] [Related]
18. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells. Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142 [TBL] [Abstract][Full Text] [Related]
19. cAMP-independent regulation of CFTR by the actin cytoskeleton. Prat AG; Xiao YF; Ausiello DA; Cantiello HF Am J Physiol; 1995 Jun; 268(6 Pt 1):C1552-61. PubMed ID: 7541942 [TBL] [Abstract][Full Text] [Related]
20. The role of the C terminus and Na+/H+ exchanger regulatory factor in the functional expression of cystic fibrosis transmembrane conductance regulator in nonpolarized cells and epithelia. Benharouga M; Sharma M; So J; Haardt M; Drzymala L; Popov M; Schwapach B; Grinstein S; Du K; Lukacs GL J Biol Chem; 2003 Jun; 278(24):22079-89. PubMed ID: 12651858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]