These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 23636473)

  • 1. A kinetic study on bacterial sulfate reduction.
    Bernardez LA; de Andrade Lima LR; de Jesus EB; Ramos CL; Almeida PF
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1861-9. PubMed ID: 23636473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel biological sulfate reduction method using hydrogenogenic carboxydotrophic mesophilic bacteria.
    Sinharoy A; Manikandan NA; Pakshirajan K
    Bioresour Technol; 2015 Sep; 192():494-500. PubMed ID: 26081625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polysulfide reduction using sulfate-reducing bacteria in a photocatalytic hydrogen generation system.
    Takahashi Y; Suto K; Inoue C; Chida T
    J Biosci Bioeng; 2008 Sep; 106(3):219-25. PubMed ID: 18929995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques.
    Gonzalez-Sanchez A; Tomas M; Dorado AD; Gamisans X; Guisasola A; Lafuente J; Gabriel D
    Water Sci Technol; 2009; 59(7):1323-9. PubMed ID: 19380997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study.
    Nagpal S; Chuichulcherm S; Livingston A; Peeva L
    Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological sulfide oxidation in a fluidized bed reactor.
    Annachhatre AP; Suktrakoolvait S
    Environ Technol; 2001 Jun; 22(6):661-72. PubMed ID: 11482386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor system.
    Chuang SH; Pai TY; Horng RY
    Environ Technol; 2005 Sep; 26(9):993-1001. PubMed ID: 16196408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply.
    Dattagupta S; Miles LL; Barnabei MS; Fisher CR
    J Exp Biol; 2006 Oct; 209(Pt 19):3795-805. PubMed ID: 16985196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters.
    Eckford RE; Fedorak PM
    J Ind Microbiol Biotechnol; 2002 Aug; 29(2):83-92. PubMed ID: 12161775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells.
    Kuo WC; Shu TY
    J Hazard Mater; 2004 Sep; 113(1-3):147-55. PubMed ID: 15363525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor.
    Bijmans MF; van Helvoort PJ; Dar SA; Dopson M; Lens PN; Buisman CJ
    Water Res; 2009 Feb; 43(3):853-61. PubMed ID: 19059621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of culture conditions on the competitive interaction between lactate oxidizers and fermenters in a biological sulfate reduction system.
    Oyekola OO; Harrison ST; van Hille RP
    Bioresour Technol; 2012 Jan; 104():616-21. PubMed ID: 22154582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol and toluene removal in a horizontal-flow anaerobic immobilized biomass reactor in the presence of sulfate.
    Cattony EB; Chinalia FA; Ribeiro R; Zaiat M; Foresti E; Varesche MB
    Biotechnol Bioeng; 2005 Jul; 91(2):244-53. PubMed ID: 15915510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification.
    Janssen AJ; Lens PN; Stams AJ; Plugge CM; Sorokin DY; Muyzer G; Dijkman H; Van Zessen E; Luimes P; Buisman CJ
    Sci Total Environ; 2009 Feb; 407(4):1333-43. PubMed ID: 19027933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell.
    Cooney MJ; Roschi E; Marison IW; Comninellis C; von Stockar U
    Enzyme Microb Technol; 1996 Apr; 18(5):358-65. PubMed ID: 8882004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of COD/SO(4)(2-) ratio and sulfide on thermophilic (55 degrees C) sulfate reduction during the acidification of sucrose at pH 6.
    Lopes SI; Wang X; Capela MI; Lens PN
    Water Res; 2007 Jun; 41(11):2379-92. PubMed ID: 17434203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification.
    Kleerebezem R; Mendez R
    Water Sci Technol; 2002; 45(10):349-56. PubMed ID: 12188569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of microbial sulfate reduction by desulfovibrio desulfuricans in an anaerobic upflow porous media biofilm reactor.
    Chen CI; Mueller RF; Griebe T
    Biotechnol Bioeng; 1994 Feb; 43(4):267-74. PubMed ID: 18615689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria.
    Selvaraj PT; Little MH; Kaufman EN
    Biotechnol Prog; 1997; 13(5):583-9. PubMed ID: 9376112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.