These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23636473)

  • 21. Biological souring and mitigation in oil reservoirs.
    Gieg LM; Jack TR; Foght JM
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):263-82. PubMed ID: 21858492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.
    Balk M; Weijma J; Goorissen HP; Ronteltap M; Hansen TA; Stams AJ
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1203-11. PubMed ID: 17028873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of chromium and lead by a sulfate-reducing consortium using peat moss as carbon source.
    Márquez-Reyes JM; López-Chuken UJ; Valdez-González A; Luna-Olvera HA
    Bioresour Technol; 2013 Sep; 144():128-34. PubMed ID: 23859988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous sulfate reduction and copper removal by a PVA-immobilized sulfate reducing bacterial culture.
    Hsu HF; Jhuo YS; Kumar M; Ma YS; Lin JG
    Bioresour Technol; 2010 Jun; 101(12):4354-61. PubMed ID: 20153634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anaerobic cometabolic conversion of benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer.
    Annweiler E; Michaelis W; Meckenstock RU
    Appl Environ Microbiol; 2001 Nov; 67(11):5077-83. PubMed ID: 11679329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic comparison of microbial assemblages for the anaerobic treatment of wastewater with high sulfate and heavy metal contents.
    Sinbuathong N; Sirirote P; Liengcharernsit W; Khaodhiar S; Watts DJ
    J Environ Biol; 2009 Jan; 30(1):11-5. PubMed ID: 20112857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor.
    van den Bosch PL; van Beusekom OC; Buisman CJ; Janssen AJ
    Biotechnol Bioeng; 2007 Aug; 97(5):1053-63. PubMed ID: 17216660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].
    Hudz' SP; Peretiatko TB; Moroz OM; Hnatush SO; Klym IR
    Mikrobiol Z; 2011; 73(2):33-8. PubMed ID: 21598657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of sulfate-reducing bacteria with solid-phase electron acceptors.
    Karnachuk OV; Kurochkina SY; Tuovinen OH
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):482-6. PubMed ID: 11954795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of anaerobic lactate metabolism under biosulfidogenic conditions.
    Oyekola OO; van Hille RP; Harrison ST
    Water Res; 2009 Aug; 43(14):3345-54. PubMed ID: 19559456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery].
    Nazina TN; Grigor'ian AA; Shestakova NM; Babich TL; Ivoĭlov VS; Feng Q; Ni F; Wang J; She Y; Xiang T; Luo Z; Beliaev SS; Ivanov MV
    Mikrobiologiia; 2007; 76(3):329-39. PubMed ID: 17633408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge.
    van der Zee FP; Bisschops IA; Blanchard VG; Bouwman RH; Lettinga G; Field JA
    Water Res; 2003 Jul; 37(13):3098-109. PubMed ID: 14509696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lead removal through biological sulfate reduction process.
    Hien Hoa TT; Liamleam W; Annachhatre AP
    Bioresour Technol; 2007 Sep; 98(13):2538-48. PubMed ID: 17174088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands.
    Stein OR; Borden-Stewart DJ; Hook PB; Jones WL
    Water Res; 2007 Aug; 41(15):3440-8. PubMed ID: 17599383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical and microbiological changes in laboratory incubations of nitrate amendment "sour" produced waters from three western Canadian oil fields.
    Eckford RE; Fedorak PM
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):243-54. PubMed ID: 12407458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of microbial sulfide production by limiting sulfate dispersal in a water-injected oil field.
    Shen Y; Agrawal A; Suri NK; An D; Voordouw JK; Clark RG; Jack TR; Miner K; Pederzolli R; Benko A; Voordouw G
    J Biotechnol; 2018 Jan; 266():14-19. PubMed ID: 29197544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Thiosulfate as an intermediate product of bacterial sulfate reduction].
    Vaĭnshteĭn MB; Matrosov AG; Baskunov BP; Ziakun AM; Ivanov MV
    Mikrobiologiia; 1980; 49(6):855-8. PubMed ID: 7207258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of redox indicators for determining sulfate-reducing and dechlorinating conditions.
    Jones BD; Ingle JD
    Water Res; 2005 Nov; 39(18):4343-54. PubMed ID: 16242754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane.
    Deusner C; Meyer V; Ferdelman TG
    Biotechnol Bioeng; 2010 Feb; 105(3):524-33. PubMed ID: 19787639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.