These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23636584)

  • 41. Microfluidic arrays for logarithmically perfused embryonic stem cell culture.
    Kim L; Vahey MD; Lee HY; Voldman J
    Lab Chip; 2006 Mar; 6(3):394-406. PubMed ID: 16511623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels.
    Choi E; Chang HK; Lim CY; Kim T; Park J
    Lab Chip; 2012 Oct; 12(20):3968-75. PubMed ID: 22907568
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genotyping from saliva with a one-step microdevice.
    Pjescic I; Crews N
    Lab Chip; 2012 Jul; 12(14):2514-9. PubMed ID: 22534758
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.
    Cooksey GA; Plant AL; Atencia J
    Lab Chip; 2009 May; 9(9):1298-300. PubMed ID: 19370253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.
    Li Y; Feng X; Wang Y; Du W; Chen P; Liu C; Liu BF
    Lab Chip; 2015 Aug; 15(15):3203-10. PubMed ID: 26126652
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients.
    Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J
    Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous measurement of reactions in microdroplets filled by concentration gradients.
    Damean N; Olguin LF; Hollfelder F; Abell C; Huck WT
    Lab Chip; 2009 Jun; 9(12):1707-13. PubMed ID: 19495454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification.
    Zhang C; Xing D
    Biomed Microdevices; 2010 Feb; 12(1):1-12. PubMed ID: 19757072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A microfluidic device with passive air-bubble valves for real-time measurement of dose-dependent drug cytotoxicity through impedance sensing.
    Xu Y; Lv Y; Wang L; Xing W; Cheng J
    Biosens Bioelectron; 2012 Feb; 32(1):300-4. PubMed ID: 22208957
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A multi-functional electrochemical sensing system using microfluidic technology for the detection of urea and creatinine.
    Huang CJ; Lin JL; Chen PH; Syu MJ; Lee GB
    Electrophoresis; 2011 Apr; 32(8):931-8. PubMed ID: 21437917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA.
    Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J
    Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a microplate reader compatible microfluidic chip for ELISA.
    Hou F; Zhang Q; Yang J; Li X; Yang X; Wang S; Cheng Z
    Biomed Microdevices; 2012 Aug; 14(4):729-37. PubMed ID: 22526682
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations.
    Weng X; Jiang H; Chon CH; Chen S; Cao H; Li D
    J Biotechnol; 2011 Sep; 155(3):330-7. PubMed ID: 21820019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A tetra-layer microfluidic system for peptide affinity screening through integrated sample injection.
    Wang W; Huang Y; Jin Y; Liu G; Chen Y; Ma H; Zhao R
    Analyst; 2013 May; 138(10):2890-6. PubMed ID: 23529566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Next-generation integrated microfluidic circuits.
    Mosadegh B; Bersano-Begey T; Park JY; Burns MA; Takayama S
    Lab Chip; 2011 Sep; 11(17):2813-8. PubMed ID: 21799977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of sample transfer in two-dimensional microfluidic separation systems.
    Yang S; Liu J; DeVoe DL
    Lab Chip; 2008 Jul; 8(7):1145-52. PubMed ID: 18584091
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reconfigurable microfluidic dilution for high-throughput quantitative assays.
    Fan J; Li B; Xing S; Pan T
    Lab Chip; 2015 Jun; 15(12):2670-9. PubMed ID: 25994379
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temperature distribution effects on micro-CFPCR performance.
    Chen PC; Nikitopoulos DE; Soper SA; Murphy MC
    Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sample flow switching techniques on microfluidic chips.
    Pan YJ; Lin JJ; Luo WJ; Yang RJ
    Biosens Bioelectron; 2006 Feb; 21(8):1644-8. PubMed ID: 16112854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.