BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23636594)

  • 1. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa.
    Wang Z; Luo Z; Yan C
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7286-95. PubMed ID: 23636594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes.
    Guo P; Gong Y; Wang C; Liu X; Liu J
    Environ Toxicol Chem; 2011 Aug; 30(8):1754-9. PubMed ID: 21560143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.
    Luo Z; Wang Z; Yan Y; Li J; Yan C; Xing B
    Environ Pollut; 2018 Jul; 238():631-637. PubMed ID: 29614472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.
    Yan C; Wang Z; Luo Z
    PLoS One; 2014; 9(12):e116099. PubMed ID: 25549253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic uptake, transformation, and release by three freshwater algae under conditions with and without growth stress.
    Xie S; Liu J; Yang F; Feng H; Wei C; Wu F
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19413-19422. PubMed ID: 29728971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa.
    Wang Z; Gui H; Luo Z; Zhen Z; Yan C; Xing B
    Environ Pollut; 2019 Sep; 252(Pt B):1755-1763. PubMed ID: 31295694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of humic acid and fluvic acid on the altered toxicities of arsenite and arsenate toward two freshwater algae.
    Wang NX; Chen ZY; Zhou WQ; Zhang W
    Aquat Toxicol; 2022 Aug; 249():106218. PubMed ID: 35704967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of arsenic speciation on accumulation and toxicity of dietborne arsenic exposures to rainbow trout.
    Erickson RJ; Mount DR; Highland TL; Hockett JR; Hoff DJ; Jenson CT; Lahren TJ
    Aquat Toxicol; 2019 May; 210():227-241. PubMed ID: 30877964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: A comparative study between As(III) and As(V) exposure.
    Wang X; Liu L; Wang X; Ren J; Jia P; Fan W
    Environ Pollut; 2020 Jan; 256():113459. PubMed ID: 31708282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes.
    Wang Z; Luo Z; Yan C; Che F; Yan Y
    J Hazard Mater; 2014 Jul; 276():393-9. PubMed ID: 24922097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Accumulation and Biotransformation in Typical Freshwater Algae Species Influenced by Titanium Dioxide Nanoparticles Under Long-term Exposure].
    Li JL; Wang ZH; Yan YM; Huang B; Luo ZX
    Huan Jing Ke Xue; 2017 Feb; 38(2):832-836. PubMed ID: 29964544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolism of arsenite and arsenate by the rat.
    Lerman S; Clarkson TW
    Fundam Appl Toxicol; 1983; 3(4):309-14. PubMed ID: 6628893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of As efflux from the roots of As hyperaccumulator Pteris vittata L.
    Huang Y; Hatayama M; Inoue C
    Planta; 2011 Dec; 234(6):1275-84. PubMed ID: 21789508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.
    Hatayama M; Sato T; Shinoda K; Inoue C
    J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular interaction and metabolic fate of arsenite and arsenate in mice and rabbits.
    Vahter M; Marafante E
    Chem Biol Interact; 1983 Oct; 47(1):29-44. PubMed ID: 6640784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreasing arsenic accumulation but promoting arsenate biotransformation in Microcystis aeruginosa regulated by nano-Fe
    Chen Y; Wang Z; Luo Z; Zhao Y; Yu J
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):62423-62431. PubMed ID: 35397725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.
    Fan W; Ren J; Li X; Wei C; Xue F; Zhang N
    Environ Toxicol Chem; 2015 Nov; 34(11):2629-35. PubMed ID: 26084717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa.
    Zhang X; Zhao FJ; Huang Q; Williams PN; Sun GX; Zhu YG
    New Phytol; 2009; 182(2):421-428. PubMed ID: 19210724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.
    Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S
    Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.