These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23636720)

  • 1. Effects of caudate microstimulation on spontaneous and purposive saccades.
    Watanabe M; Munoz DP
    J Neurophysiol; 2013 Jul; 110(2):334-43. PubMed ID: 23636720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccade suppression by electrical microstimulation in monkey caudate nucleus.
    Watanabe M; Munoz DP
    J Neurosci; 2010 Feb; 30(7):2700-9. PubMed ID: 20164354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccade reaction times are influenced by caudate microstimulation following and prior to visual stimulus appearance.
    Watanabe M; Munoz DP
    J Cogn Neurosci; 2011 Jul; 23(7):1794-807. PubMed ID: 20666599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural activity in primate caudate nucleus associated with pro- and antisaccades.
    Ford KA; Everling S
    J Neurophysiol; 2009 Oct; 102(4):2334-41. PubMed ID: 19692516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of conflict resolution between automatic and volitional actions by basal ganglia.
    Watanabe M; Munoz DP
    Eur J Neurosci; 2009 Dec; 30(11):2165-76. PubMed ID: 20128852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of anterior cingulate microstimulation on pro- and antisaccades in nonhuman primates.
    Phillips JM; Johnston K; Everling S
    J Cogn Neurosci; 2011 Feb; 23(2):481-90. PubMed ID: 20350174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitation of saccadic eye movements by postsaccadic electrical stimulation in the primate caudate.
    Nakamura K; Hikosaka O
    J Neurosci; 2006 Dec; 26(50):12885-95. PubMed ID: 17167079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of primate caudate neural activity and saccade parameters in reward-oriented behavior.
    Itoh H; Nakahara H; Hikosaka O; Kawagoe R; Takikawa Y; Aihara K
    J Neurophysiol; 2003 Apr; 89(4):1774-83. PubMed ID: 12686566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades.
    Kato M; Miyashita N; Hikosaka O; Matsumura M; Usui S; Kori A
    J Neurosci; 1995 Jan; 15(1 Pt 2):912-27. PubMed ID: 7823189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys.
    Basso MA; Pokorny JJ; Liu P
    Eur J Neurosci; 2005 Jul; 22(2):448-64. PubMed ID: 16045498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstimulation of monkey dorsolateral prefrontal cortex impairs antisaccade performance.
    Wegener SP; Johnston K; Everling S
    Exp Brain Res; 2008 Oct; 190(4):463-73. PubMed ID: 18641976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of visually and memory-guided saccades induced by electrical stimulation of the monkey frontal eye field. II. Suppression of bilateral saccades.
    Izawa Y; Suzuki H; Shinoda Y
    J Neurophysiol; 2004 Oct; 92(4):2261-73. PubMed ID: 15381745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstimulation of the midbrain tegmentum creates learning signals for saccade adaptation.
    Kojima Y; Yoshida K; Iwamoto Y
    J Neurosci; 2007 Apr; 27(14):3759-67. PubMed ID: 17409240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of visually and memory-guided saccades induced by electrical stimulation of the monkey frontal eye field. I. Suppression of ipsilateral saccades.
    Izawa Y; Suzuki H; Shinoda Y
    J Neurophysiol; 2004 Oct; 92(4):2248-60. PubMed ID: 15381744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separate, causal roles of the caudate in saccadic choice and execution in a perceptual decision task.
    Ding L; Gold JI
    Neuron; 2012 Sep; 75(5):865-74. PubMed ID: 22958826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presetting basal ganglia for volitional actions.
    Watanabe M; Munoz DP
    J Neurosci; 2010 Jul; 30(30):10144-57. PubMed ID: 20668198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation.
    Knight TA; Fuchs AF
    J Neurophysiol; 2007 Jan; 97(1):618-34. PubMed ID: 17065243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder.
    Munoz DP; Armstrong IT; Hampton KA; Moore KD
    J Neurophysiol; 2003 Jul; 90(1):503-14. PubMed ID: 12672781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field.
    Kunimatsu J; Tanaka M
    Eur J Neurosci; 2012 Nov; 36(9):3258-68. PubMed ID: 22845785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of microstimulation of the dorsomedial frontal cortex on saccade latency.
    Yang SN; Heinen SJ; Missal M
    J Neurophysiol; 2008 Apr; 99(4):1857-70. PubMed ID: 18216220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.