These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 23636739)
1. Priors in whole-genome regression: the bayesian alphabet returns. Gianola D Genetics; 2013 Jul; 194(3):573-96. PubMed ID: 23636739 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep. Zhu S; Guo T; Yuan C; Liu J; Li J; Han M; Zhao H; Wu Y; Sun W; Wang X; Wang T; Liu J; Tiambo CK; Yue Y; Yang B G3 (Bethesda); 2021 Oct; 11(11):. PubMed ID: 34849779 [TBL] [Abstract][Full Text] [Related]
3. A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait. Gianola D; Wu XL; Manfredi E; Simianer H Genetica; 2010 Oct; 138(9-10):959-77. PubMed ID: 20737196 [TBL] [Abstract][Full Text] [Related]
4. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies. Zhao T; Fernando R; Cheng H G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126 [TBL] [Abstract][Full Text] [Related]
5. Genomic BLUP decoded: a look into the black box of genomic prediction. Habier D; Fernando RL; Garrick DJ Genetics; 2013 Jul; 194(3):597-607. PubMed ID: 23640517 [TBL] [Abstract][Full Text] [Related]
6. A Multiple-Trait Bayesian Variable Selection Regression Method for Integrating Phenotypic Causal Networks in Genome-Wide Association Studies. Wang Z; Chapman D; Morota G; Cheng H G3 (Bethesda); 2020 Dec; 10(12):4439-4448. PubMed ID: 33020191 [TBL] [Abstract][Full Text] [Related]
7. Additive genetic variability and the Bayesian alphabet. Gianola D; de los Campos G; Hill WG; Manfredi E; Fernando R Genetics; 2009 Sep; 183(1):347-63. PubMed ID: 19620397 [TBL] [Abstract][Full Text] [Related]
8. Genomic Prediction Using Multi-trait Weighted GBLUP Accounting for Heterogeneous Variances and Covariances Across the Genome. Karaman E; Lund MS; Anche MT; Janss L; Su G G3 (Bethesda); 2018 Nov; 8(11):3549-3558. PubMed ID: 30194089 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide prediction of traits with different genetic architecture through efficient variable selection. Wimmer V; Lehermeier C; Albrecht T; Auinger HJ; Wang Y; Schön CC Genetics; 2013 Oct; 195(2):573-87. PubMed ID: 23934883 [TBL] [Abstract][Full Text] [Related]
10. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle. Lopes FB; Baldi F; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Magnabosco CU Animal; 2021 Jan; 15(1):100006. PubMed ID: 33516009 [TBL] [Abstract][Full Text] [Related]
11. Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression. Gianola D; Fernando RL; Schön CC Theor Popul Biol; 2020 Apr; 132():47-59. PubMed ID: 31830483 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity to prior specification in Bayesian genome-based prediction models. Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460 [TBL] [Abstract][Full Text] [Related]
13. Cross-Validation Without Doing Cross-Validation in Genome-Enabled Prediction. Gianola D; Schön CC G3 (Bethesda); 2016 Oct; 6(10):3107-3128. PubMed ID: 27489209 [TBL] [Abstract][Full Text] [Related]
14. Inferring genetic architecture of complex traits using Bayesian integrative analysis of genome and transcriptome data. Ehsani A; Sørensen P; Pomp D; Allan M; Janss L BMC Genomics; 2012 Sep; 13():456. PubMed ID: 22950759 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle. Hassani S; Saatchi M; Fernando RL; Garrick DJ Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091 [TBL] [Abstract][Full Text] [Related]
16. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies. Calus MP; de Haas Y; Veerkamp RF J Dairy Sci; 2013 Oct; 96(10):6703-15. PubMed ID: 23891299 [TBL] [Abstract][Full Text] [Related]
17. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection. Calus MPL; Goddard ME; Wientjes YCJ; Bowman PJ; Hayes BJ J Dairy Sci; 2018 May; 101(5):4279-4294. PubMed ID: 29550121 [TBL] [Abstract][Full Text] [Related]
18. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835 [TBL] [Abstract][Full Text] [Related]
19. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits. Gebreyesus G; Lund MS; Buitenhuis B; Bovenhuis H; Poulsen NA; Janss LG Genet Sel Evol; 2017 Dec; 49(1):89. PubMed ID: 29207947 [TBL] [Abstract][Full Text] [Related]
20. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population. Ma P; Lund MS; Aamand GP; Su G J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]