BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 23636739)

  • 1. Priors in whole-genome regression: the bayesian alphabet returns.
    Gianola D
    Genetics; 2013 Jul; 194(3):573-96. PubMed ID: 23636739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep.
    Zhu S; Guo T; Yuan C; Liu J; Li J; Han M; Zhao H; Wu Y; Sun W; Wang X; Wang T; Liu J; Tiambo CK; Yue Y; Yang B
    G3 (Bethesda); 2021 Oct; 11(11):. PubMed ID: 34849779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait.
    Gianola D; Wu XL; Manfredi E; Simianer H
    Genetica; 2010 Oct; 138(9-10):959-77. PubMed ID: 20737196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic BLUP decoded: a look into the black box of genomic prediction.
    Habier D; Fernando RL; Garrick DJ
    Genetics; 2013 Jul; 194(3):597-607. PubMed ID: 23640517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multiple-Trait Bayesian Variable Selection Regression Method for Integrating Phenotypic Causal Networks in Genome-Wide Association Studies.
    Wang Z; Chapman D; Morota G; Cheng H
    G3 (Bethesda); 2020 Dec; 10(12):4439-4448. PubMed ID: 33020191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive genetic variability and the Bayesian alphabet.
    Gianola D; de los Campos G; Hill WG; Manfredi E; Fernando R
    Genetics; 2009 Sep; 183(1):347-63. PubMed ID: 19620397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Prediction Using Multi-trait Weighted GBLUP Accounting for Heterogeneous Variances and Covariances Across the Genome.
    Karaman E; Lund MS; Anche MT; Janss L; Su G
    G3 (Bethesda); 2018 Nov; 8(11):3549-3558. PubMed ID: 30194089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide prediction of traits with different genetic architecture through efficient variable selection.
    Wimmer V; Lehermeier C; Albrecht T; Auinger HJ; Wang Y; Schön CC
    Genetics; 2013 Oct; 195(2):573-87. PubMed ID: 23934883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle.
    Lopes FB; Baldi F; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Magnabosco CU
    Animal; 2021 Jan; 15(1):100006. PubMed ID: 33516009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression.
    Gianola D; Fernando RL; Schön CC
    Theor Popul Biol; 2020 Apr; 132():47-59. PubMed ID: 31830483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity to prior specification in Bayesian genome-based prediction models.
    Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-Validation Without Doing Cross-Validation in Genome-Enabled Prediction.
    Gianola D; Schön CC
    G3 (Bethesda); 2016 Oct; 6(10):3107-3128. PubMed ID: 27489209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring genetic architecture of complex traits using Bayesian integrative analysis of genome and transcriptome data.
    Ehsani A; Sørensen P; Pomp D; Allan M; Janss L
    BMC Genomics; 2012 Sep; 13():456. PubMed ID: 22950759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.
    Calus MP; de Haas Y; Veerkamp RF
    J Dairy Sci; 2013 Oct; 96(10):6703-15. PubMed ID: 23891299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection.
    Calus MPL; Goddard ME; Wientjes YCJ; Bowman PJ; Hayes BJ
    J Dairy Sci; 2018 May; 101(5):4279-4294. PubMed ID: 29550121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers.
    Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW
    Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits.
    Gebreyesus G; Lund MS; Buitenhuis B; Bovenhuis H; Poulsen NA; Janss LG
    Genet Sel Evol; 2017 Dec; 49(1):89. PubMed ID: 29207947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.