These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
654 related articles for article (PubMed ID: 23636748)
21. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study. Rémond A; Naïli S; Lemaire T Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014 [TBL] [Abstract][Full Text] [Related]
22. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads. Yao J; Turteltaub SR; Ducheyne P Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476 [TBL] [Abstract][Full Text] [Related]
23. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study. Fagan MJ; Julian S; Siddall DJ; Mohsen AM Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788 [TBL] [Abstract][Full Text] [Related]
24. The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis. Schmidt H; Kettler A; Rohlmann A; Claes L; Wilke HJ Clin Biomech (Bristol); 2007 Nov; 22(9):988-98. PubMed ID: 17822814 [TBL] [Abstract][Full Text] [Related]
25. Assessment of intervertebral disc degeneration-related properties using finite element models based on [Formula: see text]-weighted MRI data. Chetoui MA; Boiron O; Ghiss M; Dogui A; Deplano V Biomech Model Mechanobiol; 2019 Feb; 18(1):17-28. PubMed ID: 30074099 [TBL] [Abstract][Full Text] [Related]
26. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132 [TBL] [Abstract][Full Text] [Related]
27. Effects of resting modes on human lumbar spines with different levels of degenerated intervertebral discs: a finite element investigation. Fan R; Gong H; Qiu S; Zhang X; Fang J; Zhu D BMC Musculoskelet Disord; 2015 Aug; 16():221. PubMed ID: 26300114 [TBL] [Abstract][Full Text] [Related]
28. Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc. Little JP; Adam CJ; Evans JH; Pettet GJ; Pearcy MJ J Biomech; 2007; 40(12):2744-51. PubMed ID: 17383659 [TBL] [Abstract][Full Text] [Related]
29. Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads. Schmidt H; Heuer F; Wilke HJ Med Eng Phys; 2009 Jul; 31(6):642-9. PubMed ID: 19196536 [TBL] [Abstract][Full Text] [Related]
30. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332 [TBL] [Abstract][Full Text] [Related]
31. A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: a combined experimental and finite element approach. Gupta S; Lin J; Ashby P; Pruitt L J Mech Behav Biomed Mater; 2009 Aug; 2(4):326-37; discussion 337-8. PubMed ID: 19627839 [TBL] [Abstract][Full Text] [Related]
32. Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine--a finite element based study. Faizan A; Goel VK; Biyani A; Garfin SR; Bono CM Clin Biomech (Bristol); 2012 Mar; 27(3):226-33. PubMed ID: 22019300 [TBL] [Abstract][Full Text] [Related]
33. Stochastic finite element analysis of biological systems: comparison of a simple intervertebral disc model with experimental results. Espino DM; Meakin JR; Hukins DW; Reid JE Comput Methods Biomech Biomed Engin; 2003 Aug; 6(4):243-8. PubMed ID: 12959758 [TBL] [Abstract][Full Text] [Related]
34. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation. Clouthier AL; Hosseini HS; Maquer G; Zysset PK Med Eng Phys; 2015 Jun; 37(6):599-604. PubMed ID: 25922211 [TBL] [Abstract][Full Text] [Related]
35. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method. Guo LX; Li R; Zhang M Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902 [TBL] [Abstract][Full Text] [Related]
36. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. Cao L; Youn I; Guilak F; Setton LA J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764 [TBL] [Abstract][Full Text] [Related]
37. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression. Recuerda M; Coté SP; Villemure I; Périé D J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745 [TBL] [Abstract][Full Text] [Related]
38. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992 [TBL] [Abstract][Full Text] [Related]
39. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression. Stokes IA; Laible JP; Gardner-Morse MG; Costi JJ; Iatridis JC Ann Biomed Eng; 2011 Jan; 39(1):122-31. PubMed ID: 20711754 [TBL] [Abstract][Full Text] [Related]
40. Damage accumulation location under cyclic loading in the lumbar disc shifts from inner annulus lamellae to peripheral annulus with increasing disc degeneration. Qasim M; Natarajan RN; An HS; Andersson GB J Biomech; 2014 Jan; 47(1):24-31. PubMed ID: 24231247 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]