These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 23636927)
1. Quantitative optimization of solid freeform deposition of aqueous hydrogels. Kang KH; Hockaday LA; Butcher JT Biofabrication; 2013 Sep; 5(3):035001. PubMed ID: 23636927 [TBL] [Abstract][Full Text] [Related]
2. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Hockaday LA; Kang KH; Colangelo NW; Cheung PY; Duan B; Malone E; Wu J; Girardi LN; Bonassar LJ; Lipson H; Chu CC; Butcher JT Biofabrication; 2012 Sep; 4(3):035005. PubMed ID: 22914604 [TBL] [Abstract][Full Text] [Related]
3. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels. Kang LH; Armstrong PA; Lee LJ; Duan B; Kang KH; Butcher JT Ann Biomed Eng; 2017 Feb; 45(2):360-377. PubMed ID: 27106636 [TBL] [Abstract][Full Text] [Related]
4. The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system. Buyukhatipoglu K; Jo W; Sun W; Clyne AM Biofabrication; 2009 Sep; 1(3):035003. PubMed ID: 20811107 [TBL] [Abstract][Full Text] [Related]
5. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
6. Bioprinting endothelial cells with alginate for 3D tissue constructs. Khalil S; Sun W J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253 [TBL] [Abstract][Full Text] [Related]
7. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Occhetta P; Sadr N; Piraino F; Redaelli A; Moretti M; Rasponi M Biofabrication; 2013 Sep; 5(3):035002. PubMed ID: 23685332 [TBL] [Abstract][Full Text] [Related]
9. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system. Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985 [TBL] [Abstract][Full Text] [Related]
10. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization. Song SJ; Choi J; Park YD; Lee JJ; Hong SY; Sun K Artif Organs; 2010 Nov; 34(11):1044-8. PubMed ID: 21092048 [TBL] [Abstract][Full Text] [Related]
11. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Cohen DL; Malone E; Lipson H; Bonassar LJ Tissue Eng; 2006 May; 12(5):1325-35. PubMed ID: 16771645 [TBL] [Abstract][Full Text] [Related]
12. Multilayer microfluidic PEGDA hydrogels. Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685 [TBL] [Abstract][Full Text] [Related]
13. Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs. Cohen DL; Lo W; Tsavaris A; Peng D; Lipson H; Bonassar LJ Tissue Eng Part C Methods; 2011 Feb; 17(2):239-48. PubMed ID: 20822480 [TBL] [Abstract][Full Text] [Related]
14. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Shim JH; Kim JY; Park M; Park J; Cho DW Biofabrication; 2011 Sep; 3(3):034102. PubMed ID: 21725147 [TBL] [Abstract][Full Text] [Related]
16. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078 [TBL] [Abstract][Full Text] [Related]
17. Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Ramón-Azcón J; Ahadian S; Obregón R; Camci-Unal G; Ostrovidov S; Hosseini V; Kaji H; Ino K; Shiku H; Khademhosseini A; Matsue T Lab Chip; 2012 Aug; 12(16):2959-69. PubMed ID: 22773042 [TBL] [Abstract][Full Text] [Related]
18. The impact of fabrication parameters and substrate stiffness in direct writing of living constructs. Tirella A; Ahluwalia A Biotechnol Prog; 2012; 28(5):1315-20. PubMed ID: 22736619 [TBL] [Abstract][Full Text] [Related]
19. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Billiet T; Gevaert E; De Schryver T; Cornelissen M; Dubruel P Biomaterials; 2014 Jan; 35(1):49-62. PubMed ID: 24112804 [TBL] [Abstract][Full Text] [Related]
20. Microengineered PEG hydrogels: 3D scaffolds for guided cell growth. Schulte VA; Alves DF; Dalton PP; Moeller M; Lensen MC; Mela P Macromol Biosci; 2013 May; 13(5):562-72. PubMed ID: 23420664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]