These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 23636944)

  • 21. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae.
    Liu G; Bergenholm D; Nielsen J
    mBio; 2016 May; 7(3):. PubMed ID: 27143390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters.
    Sri Theivakadadcham VS; Bergey BG; Rosonina E
    PLoS Genet; 2019 Feb; 15(2):e1007991. PubMed ID: 30763307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae.
    Morris RT; O'Connor TR; Wyrick JJ
    Bioinformatics; 2010 Jan; 26(2):168-74. PubMed ID: 19959498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae.
    Teixeira MC; Monteiro PT; Guerreiro JF; Gonçalves JP; Mira NP; dos Santos SC; Cabrito TR; Palma M; Costa C; Francisco AP; Madeira SC; Oliveira AL; Freitas AT; Sá-Correia I
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D161-6. PubMed ID: 24170807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictive models of eukaryotic transcriptional regulation reveals changes in transcription factor roles and promoter usage between metabolic conditions.
    Holland P; Bergenholm D; Börlin CS; Liu G; Nielsen J
    Nucleic Acids Res; 2019 Jun; 47(10):4986-5000. PubMed ID: 30976803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational discovery of gene modules and regulatory networks.
    Bar-Joseph Z; Gerber GK; Lee TI; Rinaldi NJ; Yoo JY; Robert F; Gordon DB; Fraenkel E; Jaakkola TS; Young RA; Gifford DK
    Nat Biotechnol; 2003 Nov; 21(11):1337-42. PubMed ID: 14555958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of context-specific gene regulatory networks with GEMULA--gene expression modeling using LAsso.
    Geeven G; van Kesteren RE; Smit AB; de Gunst MC
    Bioinformatics; 2012 Jan; 28(2):214-21. PubMed ID: 22106333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking.
    Wu G; Ji H
    BMC Bioinformatics; 2013 Jun; 14():188. PubMed ID: 23758851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model.
    Youn A; Reiss DJ; Stuetzle W
    Bioinformatics; 2010 Aug; 26(15):1879-86. PubMed ID: 20525821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yeast cell cycle transcription factors identification by variable selection criteria.
    Wang H; Wang YH; Wu WS
    Gene; 2011 Oct; 485(2):172-6. PubMed ID: 21703335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.
    Ozonov EA; van Nimwegen E
    PLoS Comput Biol; 2013; 9(8):e1003181. PubMed ID: 23990766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inferring direct regulatory targets from expression and genome location analyses: a comparison of transcription factor deletion and overexpression.
    Tang L; Liu X; Clarke ND
    BMC Genomics; 2006 Aug; 7():215. PubMed ID: 16923194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inference of combinatorial regulation in yeast transcriptional networks: a case study of sporulation.
    Wang W; Cherry JM; Nochomovitz Y; Jolly E; Botstein D; Li H
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1998-2003. PubMed ID: 15684073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Mechanism for Mendelian Dominance in Regulatory Genetic Pathways: Competitive Binding by Transcription Factors.
    Porter AH; Johnson NA; Tulchinsky AY
    Genetics; 2017 Jan; 205(1):101-112. PubMed ID: 27866169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide recruitment profiling of transcription factor Crz1 in response to high pH stress.
    Roque A; Petrezsélyová S; Serra-Cardona A; Ariño J
    BMC Genomics; 2016 Aug; 17():662. PubMed ID: 27544903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a novel oligonucleotide array-based transcription factor assay platform for genome-wide active transcription factor profiling in Saccharomyces cerevisiae.
    Zhao Y; Shao W; Wei H; Qiao J; Lu Y; Sun Y; Mitchelson K; Cheng J; Zhou Y
    J Proteome Res; 2008 Mar; 7(3):1315-25. PubMed ID: 18220337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data.
    O'Connor T; Bodén M; Bailey TL
    Nucleic Acids Res; 2017 Feb; 45(4):e19. PubMed ID: 28204599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcription factor regulation and chromosome dynamics during pseudohyphal growth.
    Mayhew D; Mitra RD
    Mol Biol Cell; 2014 Sep; 25(17):2669-76. PubMed ID: 25009286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities.
    de Boer CG; Hughes TR
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D169-79. PubMed ID: 22102575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.