These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 23637078)

  • 1. Local electrical conduction in polycrystalline La-doped BiFeO₃ thin films.
    Zhou MX; Chen B; Sun HB; Wan JG; Li ZW; Liu JM; Song FQ; Wang GH
    Nanotechnology; 2013 Jun; 24(22):225702. PubMed ID: 23637078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films.
    Shang DS; Shi L; Sun JR; Shen BG
    Nanotechnology; 2011 Jun; 22(25):254008. PubMed ID: 21572213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale domain switching behaviour in polycrystalline ferroelectric thin films.
    Wicks S; Anbusathiah V; Nagarajan V
    Nanotechnology; 2007 Nov; 18(46):465502. PubMed ID: 21730476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion in Ferroelectric Switching Performance of Polycrystalline Hf
    Hyun SD; Park HW; Kim YJ; Park MH; Lee YH; Kim HJ; Kwon YJ; Moon T; Kim KD; Lee YB; Kim BS; Hwang CS
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35374-35384. PubMed ID: 30247016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of electronic, ferroelectric and local electrical conduction behavior of RF sputtered BiFeO
    Hussain S; Awan SU; Mumtaz A; Siddique R; Aftab M; Hasanain SK
    Nanotechnology; 2024 May; 35(29):. PubMed ID: 38631335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of the magnetic domain structure in polycrystalline La(0.7)Sr(0.3)MnO3 thin films by magnetic force microscopy.
    Li Z; Wei F; Yoshimura S; Li G; Asano H; Saito H
    Phys Chem Chem Phys; 2013 Jan; 15(2):628-33. PubMed ID: 23183628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale polarization switching mechanisms in multiferroic BiFeO₃ thin films.
    Béa H; Ziegler B; Bibes M; Barthélémy A; Paruch P
    J Phys Condens Matter; 2011 Apr; 23(14):142201. PubMed ID: 21422508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain wall conductivity in La-doped BiFeO3.
    Seidel J; Maksymovych P; Batra Y; Katan A; Yang SY; He Q; Baddorf AP; Kalinin SV; Yang CH; Yang JC; Chu YH; Salje EK; Wormeester H; Salmeron M; Ramesh R
    Phys Rev Lett; 2010 Nov; 105(19):197603. PubMed ID: 21231197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conduction through 71° domain walls in BiFeO3 thin films.
    Farokhipoor S; Noheda B
    Phys Rev Lett; 2011 Sep; 107(12):127601. PubMed ID: 22026801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field-enhanced bulk conductivity and resistive-switching in Ca-doped BiFeO3 ceramics.
    Masó N; Beltrán H; Prades M; Cordoncillo E; West AR
    Phys Chem Chem Phys; 2014 Sep; 16(36):19408-16. PubMed ID: 25102158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Migration kinetics of oxygen vacancies in Mn-modified BiFeO₃ thin films.
    Wu J; Wang J; Xiao D; Zhu J
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2504-11. PubMed ID: 21675732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistive-switching behavior in polycrystalline CaCu(3)Ti(4)O(12) nanorods.
    Tararam R; Joanni E; Savu R; Bueno PR; Longo E; Varela JA
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):500-4. PubMed ID: 21244018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confinement of ferroelectric domain-wall motion at artificially formed conducting-nanofilaments in epitaxial BiFeO3 thin films.
    Kim WH; Son JY; Jang HM
    ACS Appl Mater Interfaces; 2014 May; 6(9):6346-50. PubMed ID: 24749974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO3 memristors.
    You T; Du N; Slesazeck S; Mikolajick T; Li G; Bürger D; Skorupa I; Stöcker H; Abendroth B; Beyer A; Volz K; Schmidt OG; Schmidt H
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19758-65. PubMed ID: 25366867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forming-free resistive switching in multiferroic BiFeO3 thin films with enhanced nanoscale shunts.
    Ou X; Shuai Y; Luo W; Siles PF; Kögler R; Fiedler J; Reuther H; Zhou S; Hübner R; Facsko S; Helm M; Mikolajick T; Schmidt OG; Schmidt H
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12764-71. PubMed ID: 24206244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-volatile domain nucleation and growth in multiferroic BiFeO3 films.
    Chen YC; Wang GF; Tai HH; Chen JW; Huang YC; Yang JC; Chu YH
    Nanotechnology; 2011 Jun; 22(25):254030. PubMed ID: 21572209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear electrical grain boundary properties in proton conducting Y-BaZrO3 supporting the space charge depletion model.
    Shirpour M; Merkle R; Lin CT; Maier J
    Phys Chem Chem Phys; 2012 Jan; 14(2):730-40. PubMed ID: 22108574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Observation of Domain Motion Synchronized with Resistive Switching in Multiferroic Thin Films.
    Lee JH; Yoon C; Lee S; Kim YH; Park BH
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35464-35471. PubMed ID: 27977136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary effects on the electrical conductivity of pure and doped cerium oxide thin films.
    Göbel MC; Gregori G; Guo X; Maier J
    Phys Chem Chem Phys; 2010 Nov; 12(42):14351-61. PubMed ID: 20890498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ control of oxygen vacancies in TiO₂ by atomic layer deposition for resistive switching devices.
    Park SJ; Lee JP; Jang JS; Rhu H; Yu H; You BY; Kim CS; Kim KJ; Cho YJ; Baik S; Lee W
    Nanotechnology; 2013 Jul; 24(29):295202. PubMed ID: 23799660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.