BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23637086)

  • 1. Nanoparticle transport in epithelial cells: pathway switching through bioconjugation.
    Fowler R; Vllasaliu D; Trillo FF; Garnett M; Alexander C; Horsley H; Smith B; Whitcombe I; Eaton M; Stolnik S
    Small; 2013 Oct; 9(19):3282-94. PubMed ID: 23637086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and transport of B12-conjugated nanoparticles in airway epithelium.
    Fowler R; Vllasaliu D; Falcone FH; Garnett M; Smith B; Horsley H; Alexander C; Stolnik S
    J Control Release; 2013 Nov; 172(1):374-381. PubMed ID: 24008152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells.
    He B; Lin P; Jia Z; Du W; Qu W; Yuan L; Dai W; Zhang H; Wang X; Wang J; Zhang X; Zhang Q
    Biomaterials; 2013 Aug; 34(25):6082-98. PubMed ID: 23694903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge.
    Bannunah AM; Vllasaliu D; Lord J; Stolnik S
    Mol Pharm; 2014 Dec; 11(12):4363-73. PubMed ID: 25327847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis.
    Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH
    Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway.
    Lai SK; Hida K; Man ST; Chen C; Machamer C; Schroer TA; Hanes J
    Biomaterials; 2007 Jun; 28(18):2876-84. PubMed ID: 17363053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells.
    O' Neill MJ; Guo J; Byrne C; Darcy R; O' Driscoll CM
    Int J Pharm; 2011 Jul; 413(1-2):174-83. PubMed ID: 21530624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles.
    Zhang J; Zhu X; Jin Y; Shan W; Huang Y
    Mol Pharm; 2014 May; 11(5):1520-32. PubMed ID: 24673570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems.
    Firdessa R; Oelschlaeger TA; Moll H
    Eur J Cell Biol; 2014; 93(8-9):323-37. PubMed ID: 25224362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transport pathways of polymer nanoparticles in MDCK epithelial cells.
    He B; Jia Z; Du W; Yu C; Fan Y; Dai W; Yuan L; Zhang H; Wang X; Wang J; Zhang X; Zhang Q
    Biomaterials; 2013 Jun; 34(17):4309-26. PubMed ID: 23478037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal uptake and transport of vitamin B12-loaded soy protein nanoparticles.
    Zhang J; Field CJ; Vine D; Chen L
    Pharm Res; 2015 Apr; 32(4):1288-303. PubMed ID: 25319101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically Designed Nanoscale Materials for Controlling Cellular Processes.
    Debnath K; Pal S; Jana NR
    Acc Chem Res; 2021 Jul; 54(14):2916-2927. PubMed ID: 34232016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection.
    ur Rehman Z; Hoekstra D; Zuhorn IS
    J Control Release; 2011 Nov; 156(1):76-84. PubMed ID: 21787817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of vitamin B12 conjugates to deliver protein drugs by the oral route.
    Russell-Jones GJ
    Crit Rev Ther Drug Carrier Syst; 1998; 15(6):557-86. PubMed ID: 9883390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel protein-lipid composite nanoparticles with an inner aqueous compartment as delivery systems of hydrophilic nutraceutical compounds.
    Liu G; Huang W; Babii O; Gong X; Tian Z; Yang J; Wang Y; Jacobs RL; Donna V; Lavasanifar A; Chen L
    Nanoscale; 2018 Jun; 10(22):10629-10640. PubMed ID: 29845181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma.
    Zhang B; Sun X; Mei H; Wang Y; Liao Z; Chen J; Zhang Q; Hu Y; Pang Z; Jiang X
    Biomaterials; 2013 Dec; 34(36):9171-82. PubMed ID: 24008043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles.
    Lühmann T; Rimann M; Bittermann AG; Hall H
    Bioconjug Chem; 2008 Sep; 19(9):1907-16. PubMed ID: 18717536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex.
    Park J; Choi JU; Kim K; Byun Y
    Biomaterials; 2017 Dec; 147():145-154. PubMed ID: 28946130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells.
    Monti DM; Guarnieri D; Napolitano G; Piccoli R; Netti P; Fusco S; Arciello A
    J Biotechnol; 2015 Jan; 193():3-10. PubMed ID: 25444875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.
    Luo Y; Teng Z; Wang TT; Wang Q
    J Agric Food Chem; 2013 Aug; 61(31):7621-9. PubMed ID: 23859760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.