These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23637086)

  • 21. Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro.
    Kasper J; Hermanns MI; Bantz C; Utech S; Koshkina O; Maskos M; Brochhausen C; Pohl C; Fuchs S; Unger RE; Kirkpatrick CJ
    Eur J Pharm Biopharm; 2013 Jun; 84(2):275-87. PubMed ID: 23183446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vitamin B12-mediated transport of nanoparticles across Caco-2 cells.
    Russell-Jones GJ; Arthur L; Walker H
    Int J Pharm; 1999 Mar; 179(2):247-55. PubMed ID: 10053217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells.
    Guri A; Gülseren I; Corredig M
    Food Funct; 2013 Sep; 4(9):1410-9. PubMed ID: 23921424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins.
    Birn H
    Am J Physiol Renal Physiol; 2006 Jul; 291(1):F22-36. PubMed ID: 16760376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Traveling the vitamin B12 pathway: oral delivery of protein and peptide drugs.
    Petrus AK; Fairchild TJ; Doyle RP
    Angew Chem Int Ed Engl; 2009; 48(6):1022-8. PubMed ID: 19072807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsic factor mediated cobalamin absorption.
    Francis GL
    Ann Clin Lab Sci; 1980; 10(4):334-7. PubMed ID: 7004331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular uptake pathway and drug release characteristics of drug-encapsulated glycol chitosan nanoparticles in live cells.
    Park S; Lee SJ; Chung H; Her S; Choi Y; Kim K; Choi K; Kwon IC
    Microsc Res Tech; 2010 Sep; 73(9):857-65. PubMed ID: 20232459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells.
    Wang C; Ho PC; Lim LY
    Int J Pharm; 2010 Nov; 400(1-2):201-10. PubMed ID: 20804835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration.
    Xia H; Gao X; Gu G; Liu Z; Zeng N; Hu Q; Song Q; Yao L; Pang Z; Jiang X; Chen J; Chen H
    Biomaterials; 2011 Dec; 32(36):9888-98. PubMed ID: 21937105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport.
    Jin Y; Song Y; Zhu X; Zhou D; Chen C; Zhang Z; Huang Y
    Biomaterials; 2012 Feb; 33(5):1573-82. PubMed ID: 22093292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caveolae as an additional route for influenza virus endocytosis in MDCK cells.
    Nunes-Correia I; Eulálio A; Nir S; Pedroso de Lima MC
    Cell Mol Biol Lett; 2004; 9(1):47-60. PubMed ID: 15048150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery.
    Ding HM; Ma YQ
    Small; 2015 Mar; 11(9-10):1055-71. PubMed ID: 25387905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endocytic mechanism of transferrin-conjugated nanoparticles and the effects of their size and ligand number on the efficiency of drug delivery.
    Tsuji T; Yoshitomi H; Usukura J
    Microscopy (Oxf); 2013 Jun; 62(3):341-52. PubMed ID: 23204307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. B12 trafficking in mammals: A for coenzyme escort service.
    Banerjee R
    ACS Chem Biol; 2006 Apr; 1(3):149-59. PubMed ID: 17163662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid polymeric nanoparticles: potential candidate for ophthalmic delivery.
    Bharali DJ; Armstrong D; Mousa SA
    Methods Mol Biol; 2013; 1028():279-86. PubMed ID: 23740127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subcellular compartment targeting of layered double hydroxide nanoparticles.
    Xu ZP; Niebert M; Porazik K; Walker TL; Cooper HM; Middelberg AP; Gray PP; Bartlett PF; Lu GQ
    J Control Release; 2008 Aug; 130(1):86-94. PubMed ID: 18614254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facilitated nanoscale delivery of insulin across intestinal membrane models.
    Woitiski CB; Sarmento B; Carvalho RA; Neufeld RJ; Veiga F
    Int J Pharm; 2011 Jun; 412(1-2):123-31. PubMed ID: 21501675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endocytic uptake and intracellular trafficking of bis-MPA-based hyperbranched copolymer micelles in breast cancer cells.
    Zeng X; Zhang Y; Nyström AM
    Biomacromolecules; 2012 Nov; 13(11):3814-22. PubMed ID: 23035906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors.
    Douglas KL; Piccirillo CA; Tabrizian M
    Eur J Pharm Biopharm; 2008 Mar; 68(3):676-87. PubMed ID: 17945472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration.
    Liu Z; Jiang M; Kang T; Miao D; Gu G; Song Q; Yao L; Hu Q; Tu Y; Pang Z; Chen H; Jiang X; Gao X; Chen J
    Biomaterials; 2013 May; 34(15):3870-81. PubMed ID: 23453061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.