BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23637532)

  • 1. Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study.
    Amorosa LF; Lee CH; Aydemir AB; Nizami S; Hsu A; Patel NR; Gardner TR; Navalgund A; Kim DG; Park SH; Mao JJ; Lee FY
    Int J Nanomedicine; 2013; 8():1637-43. PubMed ID: 23637532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.
    Kutikov AB; Skelly JD; Ayers DC; Song J
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4890-901. PubMed ID: 25695310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.
    Dupont KM; Boerckel JD; Stevens HY; Diab T; Kolambkar YM; Takahata M; Schwarz EM; Guldberg RE
    Cell Tissue Res; 2012 Mar; 347(3):575-88. PubMed ID: 21695398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat.
    Oryan A; Hassanajili S; Sahvieh S; Azarpira N
    Life Sci; 2020 Sep; 257():118038. PubMed ID: 32622947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J
    J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel-based Delivery of rhBMP-2 Improves Healing of Large Bone Defects Compared With Autograft.
    Krishnan L; Priddy LB; Esancy C; Li MT; Stevens HY; Jiang X; Tran L; Rowe DW; Guldberg RE
    Clin Orthop Relat Res; 2015 Sep; 473(9):2885-97. PubMed ID: 25917422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotary-jet spun polycaprolactone/nano-hydroxyapatite scaffolds modified by simulated body fluid influenced the flexural mode of the neoformed bone.
    Vasconcellos LMR; Elias CMV; Minhoto GB; Abdala JMA; Andrade TM; de Araujo JCR; Gusmão SBS; Viana BC; Marciano FR; Lobo AO
    J Mater Sci Mater Med; 2020 Jul; 31(8):72. PubMed ID: 32719958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the effective dose of bone marrow mononuclear cell therapy for bone healing in vivo.
    Janko M; Pöllinger S; Schaible A; Bellen M; Schröder K; Heilani M; Fremdling C; Marzi I; Nau C; Henrich D; Verboket RD
    Eur J Trauma Emerg Surg; 2020 Apr; 46(2):265-276. PubMed ID: 32112259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.
    Lv Q; Deng M; Ulery BD; Nair LS; Laurencin CT
    Clin Orthop Relat Res; 2013 Aug; 471(8):2422-33. PubMed ID: 23436161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of bone 1stem cell-seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat.
    Sahvieh S; Oryan A; Hassanajili S; Kamali A
    Cell Tissue Res; 2021 Feb; 383(2):735-750. PubMed ID: 32924069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of laminated poly(ε-caprolactone)-gelatin-hydroxyapatite nanocomposite scaffold bioengineered via compound techniques for bone substitution.
    Hamlekhan A; Moztarzadeh F; Mozafari M; Azami M; Nezafati N
    Biomatter; 2011; 1(1):91-101. PubMed ID: 23507731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging ideas: Engineering the periosteum: revitalizing allografts by mimicking autograft healing.
    Hoffman MD; Benoit DS
    Clin Orthop Relat Res; 2013 Mar; 471(3):721-6. PubMed ID: 23179118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo cyclic loading as a potent stimulatory signal for bone formation inside tissue engineering scaffold.
    Roshan-Ghias A; Terrier A; Bourban PE; Pioletti DP
    Eur Cell Mater; 2010 Feb; 19():41-9. PubMed ID: 20178097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft.
    Kobbe P; Laubach M; Hutmacher DW; Alabdulrahman H; Sellei RM; Hildebrand F
    Eur J Med Res; 2020 Dec; 25(1):70. PubMed ID: 33349266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.
    Chen G; Yang L; Lv Y
    J Biomed Mater Res A; 2016 Apr; 104(4):833-41. PubMed ID: 26650620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periosteum-derived mesenchymal progenitor cells in engineered implants promote fracture healing in a critical-size defect rat model.
    González-Gil AB; Lamo-Espinosa JM; Muiños-López E; Ripalda-Cemboráin P; Abizanda G; Valdés-Fernández J; López-Martínez T; Flandes-Iparraguirre M; Andreu I; Elizalde MR; Stuckensen K; Groll J; De-Juan-Pardo EM; Prósper F; Granero-Moltó F
    J Tissue Eng Regen Med; 2019 May; 13(5):742-752. PubMed ID: 30785671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic 3D-Bone Tissue Model.
    Parmaksiz M; Elçin AE; Elçin YM
    Methods Mol Biol; 2021; 2273():239-250. PubMed ID: 33604858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold.
    Nair MB; Varma HK; Menon KV; Shenoy SJ; John A
    J Biomed Mater Res A; 2009 Dec; 91(3):855-65. PubMed ID: 19065569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.