These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23637980)

  • 1. The effect of spaceflight on growth of Ulocladium chartarum colonies on the international space station.
    Gomoiu I; Chatzitheodoridis E; Vadrucci S; Walther I
    PLoS One; 2013; 8(4):e62130. PubMed ID: 23637980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal Spores Viability on the International Space Station.
    Gomoiu I; Chatzitheodoridis E; Vadrucci S; Walther I; Cojoc R
    Orig Life Evol Biosph; 2016 Nov; 46(4):403-418. PubMed ID: 27106019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colony growth and biofilm formation of
    Cortesão M; Holland G; Schütze T; Laue M; Moeller R; Meyer V
    Front Microbiol; 2022; 13():975763. PubMed ID: 36212831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crewmember microbiome may influence microbial composition of ISS habitable surfaces.
    Avila-Herrera A; Thissen J; Urbaniak C; Be NA; Smith DJ; Karouia F; Mehta S; Venkateswaran K; Jaing C
    PLoS One; 2020; 15(4):e0231838. PubMed ID: 32348348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased biofilm formation ability of Acinetobacter baumannii after spaceflight on China's Shenzhou 11 spacecraft.
    Zhao X; Yu Y; Zhang X; Huang B; Bai P; Xu C; Li D; Zhang B; Liu C
    Microbiologyopen; 2019 Jun; 8(6):e00763. PubMed ID: 30379419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station.
    Leys N; Baatout S; Rosier C; Dams A; s'Heeren C; Wattiez R; Mergeay M
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):227-45. PubMed ID: 19572210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanin protects Cryptococcus neoformans from spaceflight effects.
    Cordero RJB; Dragotakes Q; Friello PJ; Casadevall A
    Environ Microbiol Rep; 2022 Aug; 14(4):679-685. PubMed ID: 35852045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungi and Mycotoxins in Space-A Review.
    De Middeleer G; Leys N; Sas B; De Saeger S
    Astrobiology; 2019 Jul; 19(7):915-926. PubMed ID: 30973270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivation of Microbial Strains and Synthetic Communities After a Spaceflight to the International Space Station: Corroborating the Feasibility of Essential Conversions in the MELiSSA Loop.
    Ilgrande C; Mastroleo F; Christiaens MER; Lindeboom REF; Prat D; Van Hoey O; Ambrozova I; Coninx I; Heylen W; Pommerening-Roser A; Spieck E; Boon N; Vlaeminck SE; Leys N; Clauwaert P
    Astrobiology; 2019 Sep; 19(9):1167-1176. PubMed ID: 31161957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station.
    Terada M; Seki M; Takahashi R; Yamada S; Higashibata A; Majima HJ; Sudoh M; Mukai C; Ishioka N
    PLoS One; 2016; 11(3):e0150801. PubMed ID: 27029003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station.
    Onofri S; de Vera JP; Zucconi L; Selbmann L; Scalzi G; Venkateswaran KJ; Rabbow E; de la Torre R; Horneck G
    Astrobiology; 2015 Dec; 15(12):1052-9. PubMed ID: 26684504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered rodent gait characteristics after ~35 days in orbit aboard the International Space Station.
    Kwok A; Rosas S; Bateman TA; Livingston E; Smith TL; Moore J; Zawieja DC; Hampton T; Mao XW; Delp MD; Willey JS
    Life Sci Space Res (Amst); 2020 Feb; 24():9-17. PubMed ID: 31987483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.
    Kim W; Tengra FK; Young Z; Shong J; Marchand N; Chan HK; Pangule RC; Parra M; Dordick JS; Plawsky JL; Collins CH
    PLoS One; 2013; 8(4):e62437. PubMed ID: 23658630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of nutrient stability in foods from the space food system after long-duration spaceflight on the ISS.
    Zwart SR; Kloeris VL; Perchonok MH; Braby L; Smith SM
    J Food Sci; 2009 Sep; 74(7):H209-17. PubMed ID: 19895472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Monitoring in the International Space Station and Its Application on Earth.
    Ichijo T; Shimazu T; Nasu M
    Biol Pharm Bull; 2020; 43(2):254-257. PubMed ID: 32009114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "SCORPION" experiment onboard the International Space Station. Preliminary results.
    Borisov V; Deshevaya E; Grachov E; Grigoryan O; Tchurilo I; Tsetlin V
    Adv Space Res; 2003; 32(11):2373-8. PubMed ID: 14997884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accomplishments in bioastronautics research aboard International Space Station.
    Uri JJ; Haven CP
    Acta Astronaut; 2005; 56(9-12):883-9. PubMed ID: 15835037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid culture-independent microbial analysis aboard the International Space Station (ISS).
    Maule J; Wainwright N; Steele A; Monaco L; Morris H; Gunter D; Damon M; Wells M
    Astrobiology; 2009 Oct; 9(8):759-75. PubMed ID: 19845447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New challenges for Life Sciences flight project management.
    Huntoon CL
    Acta Astronaut; 1999; 44(7-12):583-4. PubMed ID: 11542522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a Spaceflight Experiment to Study Tropisms in Arabidopsis Seedlings on the International Space Station.
    Vandenbrink JP; Kiss JZ
    Methods Mol Biol; 2019; 1924():207-214. PubMed ID: 30694478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.