These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 23637993)
1. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. Schulte FA; Ruffoni D; Lambers FM; Christen D; Webster DJ; Kuhn G; Müller R PLoS One; 2013; 8(4):e62172. PubMed ID: 23637993 [TBL] [Abstract][Full Text] [Related]
2. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Schulte FA; Lambers FM; Kuhn G; Müller R Bone; 2011 Mar; 48(3):433-42. PubMed ID: 20950723 [TBL] [Abstract][Full Text] [Related]
3. Precision of bone mechanoregulation assessment in humans using longitudinal high-resolution peripheral quantitative computed tomography in vivo. Walle M; Whittier DE; Schenk D; Atkins PR; Blauth M; Zysset P; Lippuner K; Müller R; Collins CJ Bone; 2023 Jul; 172():116780. PubMed ID: 37137459 [TBL] [Abstract][Full Text] [Related]
4. Bone remodeling and responsiveness to mechanical stimuli in individuals with type 1 diabetes mellitus. Walle M; Duseja A; Whittier DE; Vilaca T; Paggiosi M; Eastell R; Müller R; Collins CJ J Bone Miner Res; 2024 Mar; 39(2):85-94. PubMed ID: 38477745 [TBL] [Abstract][Full Text] [Related]
5. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411 [TBL] [Abstract][Full Text] [Related]
6. In vivo Visualisation and Quantification of Bone Resorption and Bone Formation from Time-Lapse Imaging. Christen P; Müller R Curr Osteoporos Rep; 2017 Aug; 15(4):311-317. PubMed ID: 28639146 [TBL] [Abstract][Full Text] [Related]
7. Aging Leads to a Dysregulation in Mechanically Driven Bone Formation and Resorption. Razi H; Birkhold AI; Weinkamer R; Duda GN; Willie BM; Checa S J Bone Miner Res; 2015 Oct; 30(10):1864-73. PubMed ID: 25857303 [TBL] [Abstract][Full Text] [Related]
8. Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry. Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM Bone; 2014 Sep; 66():15-25. PubMed ID: 24882735 [TBL] [Abstract][Full Text] [Related]
9. A novel algorithm to predict bone changes in the mouse tibia properties under physiological conditions. Cheong VS; Campos Marin A; Lacroix D; Dall'Ara E Biomech Model Mechanobiol; 2020 Jun; 19(3):985-1001. PubMed ID: 31786678 [TBL] [Abstract][Full Text] [Related]
10. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response. Birkhold AI; Razi H; Duda GN; Checa S; Willie BM Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894 [TBL] [Abstract][Full Text] [Related]
11. Mechanoregulation analysis of bone formation in tissue engineered constructs requires a volumetric method using time-lapsed micro-computed tomography. Griesbach JK; Schulte FA; Schädli GN; Rubert M; Müller R Acta Biomater; 2024 Apr; 179():149-163. PubMed ID: 38492908 [TBL] [Abstract][Full Text] [Related]
12. In vivo monitoring of bone architecture and remodeling after implant insertion: The different responses of cortical and trabecular bone. Li Z; Kuhn G; von Salis-Soglio M; Cooke SJ; Schirmer M; Müller R; Ruffoni D Bone; 2015 Dec; 81():468-477. PubMed ID: 26303288 [TBL] [Abstract][Full Text] [Related]
13. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment. Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278 [TBL] [Abstract][Full Text] [Related]
14. The influence of age on adaptive bone formation and bone resorption. Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM Biomaterials; 2014 Nov; 35(34):9290-301. PubMed ID: 25128376 [TBL] [Abstract][Full Text] [Related]
15. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates. Roshan-Ghias A; Lambers FM; Gholam-Rezaee M; Müller R; Pioletti DP Bone; 2011 Dec; 49(6):1357-64. PubMed ID: 21958844 [TBL] [Abstract][Full Text] [Related]
16. A semi-empirical cell dynamics model for bone turnover under external stimulus. Carew EO J Biomech Eng; 2012 Feb; 134(2):024503. PubMed ID: 22482678 [TBL] [Abstract][Full Text] [Related]
17. Relating Bone Strain to Local Changes in Radius Microstructure Following 12 Months of Axial Forearm Loading in Women. Mancuso ME; Troy KL J Biomech Eng; 2020 Nov; 142(11):. PubMed ID: 32844217 [TBL] [Abstract][Full Text] [Related]
18. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure. Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577 [TBL] [Abstract][Full Text] [Related]
19. Longitudinal in vivo imaging of bone formation and resorption using fluorescence molecular tomography. Lambers FM; Stuker F; Weigt C; Kuhn G; Koch K; Schulte FA; Ripoll J; Rudin M; Müller R Bone; 2013 Feb; 52(2):587-95. PubMed ID: 23142804 [TBL] [Abstract][Full Text] [Related]
20. Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling. Fernández JR; García-Aznar JM; Martínez R J Theor Biol; 2012 Jan; 292():86-92. PubMed ID: 22001080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]