BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 23637993)

  • 1. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level.
    Schulte FA; Ruffoni D; Lambers FM; Christen D; Webster DJ; Kuhn G; Müller R
    PLoS One; 2013; 8(4):e62172. PubMed ID: 23637993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging.
    Schulte FA; Lambers FM; Kuhn G; Müller R
    Bone; 2011 Mar; 48(3):433-42. PubMed ID: 20950723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision of bone mechanoregulation assessment in humans using longitudinal high-resolution peripheral quantitative computed tomography in vivo.
    Walle M; Whittier DE; Schenk D; Atkins PR; Blauth M; Zysset P; Lippuner K; Müller R; Collins CJ
    Bone; 2023 Jul; 172():116780. PubMed ID: 37137459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone remodeling and responsiveness to mechanical stimuli in individuals with type 1 diabetes mellitus.
    Walle M; Duseja A; Whittier DE; Vilaca T; Paggiosi M; Eastell R; Müller R; Collins CJ
    J Bone Miner Res; 2024 Mar; 39(2):85-94. PubMed ID: 38477745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
    Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R
    Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo Visualisation and Quantification of Bone Resorption and Bone Formation from Time-Lapse Imaging.
    Christen P; Müller R
    Curr Osteoporos Rep; 2017 Aug; 15(4):311-317. PubMed ID: 28639146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging Leads to a Dysregulation in Mechanically Driven Bone Formation and Resorption.
    Razi H; Birkhold AI; Weinkamer R; Duda GN; Willie BM; Checa S
    J Bone Miner Res; 2015 Oct; 30(10):1864-73. PubMed ID: 25857303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry.
    Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM
    Bone; 2014 Sep; 66():15-25. PubMed ID: 24882735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel algorithm to predict bone changes in the mouse tibia properties under physiological conditions.
    Cheong VS; Campos Marin A; Lacroix D; Dall'Ara E
    Biomech Model Mechanobiol; 2020 Jun; 19(3):985-1001. PubMed ID: 31786678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response.
    Birkhold AI; Razi H; Duda GN; Checa S; Willie BM
    Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanoregulation analysis of bone formation in tissue engineered constructs requires a volumetric method using time-lapsed micro-computed tomography.
    Griesbach JK; Schulte FA; Schädli GN; Rubert M; Müller R
    Acta Biomater; 2024 Apr; 179():149-163. PubMed ID: 38492908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo monitoring of bone architecture and remodeling after implant insertion: The different responses of cortical and trabecular bone.
    Li Z; Kuhn G; von Salis-Soglio M; Cooke SJ; Schirmer M; Müller R; Ruffoni D
    Bone; 2015 Dec; 81():468-477. PubMed ID: 26303288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment.
    Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R
    J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of age on adaptive bone formation and bone resorption.
    Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM
    Biomaterials; 2014 Nov; 35(34):9290-301. PubMed ID: 25128376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.
    Roshan-Ghias A; Lambers FM; Gholam-Rezaee M; Müller R; Pioletti DP
    Bone; 2011 Dec; 49(6):1357-64. PubMed ID: 21958844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semi-empirical cell dynamics model for bone turnover under external stimulus.
    Carew EO
    J Biomech Eng; 2012 Feb; 134(2):024503. PubMed ID: 22482678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure.
    Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P
    Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal in vivo imaging of bone formation and resorption using fluorescence molecular tomography.
    Lambers FM; Stuker F; Weigt C; Kuhn G; Koch K; Schulte FA; Ripoll J; Rudin M; Müller R
    Bone; 2013 Feb; 52(2):587-95. PubMed ID: 23142804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling.
    Fernández JR; García-Aznar JM; Martínez R
    J Theor Biol; 2012 Jan; 292():86-92. PubMed ID: 22001080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trabecular bone remodeling: an experimental model.
    Goldstein SA; Matthews LS; Kuhn JL; Hollister SJ
    J Biomech; 1991; 24 Suppl 1():135-50. PubMed ID: 1791174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.