These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 23637993)

  • 21. Trabecular bone remodeling: an experimental model.
    Goldstein SA; Matthews LS; Kuhn JL; Hollister SJ
    J Biomech; 1991; 24 Suppl 1():135-50. PubMed ID: 1791174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of bone adaptation using damage accumulation.
    Prendergast PJ; Taylor D
    J Biomech; 1994 Aug; 27(8):1067-76. PubMed ID: 8089161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stress analysis of bone modeling response to rat molar orthodontics.
    Katona TR; Paydar NH; Akay HU; Roberts WE
    J Biomech; 1995 Jan; 28(1):27-38. PubMed ID: 7852439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New suggestions for the mechanical control of bone remodeling.
    Dunlop JW; Hartmann MA; Bréchet YJ; Fratzl P; Weinkamer R
    Calcif Tissue Int; 2009 Jul; 85(1):45-54. PubMed ID: 19373504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone remodelling.
    Hill PA
    Br J Orthod; 1998 May; 25(2):101-7. PubMed ID: 9668992
    [No Abstract]   [Full Text] [Related]  

  • 26. On the Use of Bone Remodelling Models to Estimate the Density Distribution of Bones. Uniqueness of the Solution.
    Martínez-Reina J; Ojeda J; Mayo J
    PLoS One; 2016; 11(2):e0148603. PubMed ID: 26859888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered.
    Moustafa A; Sugiyama T; Prasad J; Zaman G; Gross TS; Lanyon LE; Price JS
    Osteoporos Int; 2012 Apr; 23(4):1225-34. PubMed ID: 21573880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical regulation of bone formation and resorption around implants in a mouse model of osteopenic bone.
    Li Z; Betts D; Kuhn G; Schirmer M; Müller R; Ruffoni D
    J R Soc Interface; 2019 Mar; 16(152):20180667. PubMed ID: 30890053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical stimulus to bone.
    Goodship AE
    Ann Rheum Dis; 1992 Jan; 51(1):4-6. PubMed ID: 1540035
    [No Abstract]   [Full Text] [Related]  

  • 30. An adaptation model for trabecular bone at different mechanical levels.
    Gong H; Zhu D; Gao J; Lv L; Zhang X
    Biomed Eng Online; 2010 Jul; 9():32. PubMed ID: 20598128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography.
    Schulte FA; Lambers FM; Webster DJ; Kuhn G; Müller R
    Bone; 2011 Dec; 49(6):1166-72. PubMed ID: 21890010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanostat parameters estimated from time-lapsed
    Marques FC; Boaretti D; Walle M; Scheuren AC; Schulte FA; Müller R
    Front Bioeng Biotechnol; 2023; 11():1140673. PubMed ID: 37113673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone remodelling in humans is load-driven but not lazy.
    Christen P; Ito K; Ellouz R; Boutroy S; Sornay-Rendu E; Chapurlat RD; van Rietbergen B
    Nat Commun; 2014 Sep; 5():4855. PubMed ID: 25209333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.
    Webster D; Schulte FA; Lambers FM; Kuhn G; Müller R
    J Biomech; 2015 Mar; 48(5):866-74. PubMed ID: 25601212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone remodelling in the mouse tibia is spatio-temporally modulated by oestrogen deficiency and external mechanical loading: A combined in vivo/in silico study.
    Cheong VS; Roberts BC; Kadirkamanathan V; Dall'Ara E
    Acta Biomater; 2020 Oct; 116():302-317. PubMed ID: 32911105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton.
    Xie L; Jacobson JM; Choi ES; Busa B; Donahue LR; Miller LM; Rubin CT; Judex S
    Bone; 2006 Nov; 39(5):1059-1066. PubMed ID: 16824816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A theoretical framework for strain-related trabecular bone maintenance and adaptation.
    Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R
    J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring in vivo (re)modeling: a computational approach using 4D microCT data to quantify bone surface movements.
    Birkhold AI; Razi H; Weinkamer R; Duda GN; Checa S; Willie BM
    Bone; 2015 Jun; 75():210-21. PubMed ID: 25746796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates.
    Lambers FM; Koch K; Kuhn G; Ruffoni D; Weigt C; Schulte FA; Müller R
    Bone; 2013 Aug; 55(2):325-34. PubMed ID: 23624292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical modeling of the stress adaptation process in bone.
    Cowin SC
    Calcif Tissue Int; 1984; 36 Suppl 1():S98-103. PubMed ID: 6430529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.