BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23638023)

  • 1. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.
    Cline TJ; Bennington V; Kitchell JF
    PLoS One; 2013; 8(4):e62279. PubMed ID: 23638023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fish thermal habitat current use and simulation of thermal habitat availability in lakes of the Argentine Patagonian Andes under climate change scenarios RCP 4.5 and RCP 8.5.
    Vigliano PH; Rechencq MM; Fernández MV; Lippolt GE; Macchi PJ
    Sci Total Environ; 2018 Sep; 636():688-698. PubMed ID: 29727836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.
    Ruesch AS; Torgersen CE; Lawler JJ; Olden JD; Peterson EE; Volk CJ; Lawrence DJ
    Conserv Biol; 2012 Oct; 26(5):873-82. PubMed ID: 22827880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use.
    Caldwell TJ; Chandra S; Feher K; Simmons JB; Hogan Z
    Glob Chang Biol; 2020 Oct; 26(10):5475-5491. PubMed ID: 32602183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Habitat modulates population-level responses of freshwater salmon growth to a century of change in climate and competition.
    Price MHH; Moore JW; McKinnell S; Connors BM; Reynolds JD
    Glob Chang Biol; 2024 Jan; 30(1):e17095. PubMed ID: 38273478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.
    Warren DR; Kraft CE; Josephson DC; Driscoll CT
    Glob Chang Biol; 2017 Jun; 23(6):2149-2153. PubMed ID: 27976837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator.
    Guzzo MM; Blanchfield PJ; Rennie MD
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9912-9917. PubMed ID: 28808011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Native Chinook salmon Oncorhynchus tshawytscha and non-native brook trout Salvelinus fontinalis prefer similar water temperatures.
    Baird SE; Steel AE; Cocherell DE; Cech JJ; Fangue NA
    J Fish Biol; 2018 Nov; 93(5):1000-1004. PubMed ID: 30251252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of changing climate on the ecology and management of selected Laurentian Great Lakes fisheries.
    Lynch AJ; Taylor WW; Smith KD
    J Fish Biol; 2010 Nov; 77(8):1764-82. PubMed ID: 21078089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some (Fish Might) Like It Hot: Habitat Quality and Fish Growth from Past to Future Climates.
    Reeder WJ; Gariglio F; Carnie R; Tang C; Isaak D; Chen Q; Yu Z; McKean JA; Tonina D
    Sci Total Environ; 2021 Sep; 787():. PubMed ID: 34949897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive responses of energy storage and fish life histories to climatic gradients.
    Giacomini HC; Shuter BJ
    J Theor Biol; 2013 Dec; 339():100-11. PubMed ID: 23999284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian assessment of the mercury and PCB temporal trends in lake trout (Salvelinus namaycush) and walleye (Sander vitreus) from lake Ontario, Ontario, Canada.
    Visha A; Gandhi N; Bhavsar SP; Arhonditsis GB
    Ecotoxicol Environ Saf; 2015 Jul; 117():174-86. PubMed ID: 25900434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network.
    Isaak DJ; Luce CH; Rieman BE; Nagel DE; Peterson EE; Horan DL; Parkes S; Chandler GL
    Ecol Appl; 2010 Jul; 20(5):1350-71. PubMed ID: 20666254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic-bioenergetics model to assess depth selection and reproductive growth by lake trout (Salvelinus namaycush).
    Plumb JM; Blanchfield PJ; Abrahams MV
    Oecologia; 2014 Jun; 175(2):549-63. PubMed ID: 24682254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Within-lake habitat heterogeneity mediates community response to warming trends.
    Hovel RA; Thorson JT; Carter JL; Quinn TP
    Ecology; 2017 Sep; 98(9):2333-2342. PubMed ID: 28664599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying thermal exposure for migratory riverine species: Phenology of Chinook salmon populations predicts thermal stress.
    FitzGerald AM; John SN; Apgar TM; Mantua NJ; Martin BT
    Glob Chang Biol; 2021 Feb; 27(3):536-549. PubMed ID: 33216441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change exacerbates interspecific interactions in sympatric coastal fishes.
    Milazzo M; Mirto S; Domenici P; Gristina M
    J Anim Ecol; 2013 Mar; 82(2):468-77. PubMed ID: 23039273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projected shifts in fish species dominance in Wisconsin lakes under climate change.
    Hansen GJ; Read JS; Hansen JF; Winslow LA
    Glob Chang Biol; 2017 Apr; 23(4):1463-1476. PubMed ID: 27608297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the impacts of climate change on thermal habitat suitability for shallow-water marine fish at a global scale.
    Lavender E; Fox CJ; Burrows MT
    PLoS One; 2021; 16(10):e0258184. PubMed ID: 34606498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury trends in predatory fish in Great Slave Lake: the influence of temperature and other climate drivers.
    Evans M; Muir D; Brua RB; Keating J; Wang X
    Environ Sci Technol; 2013 Nov; 47(22):12793-801. PubMed ID: 24111928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.