These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 23638024)
1. Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins. Cho CP; Lin SC; Chou MY; Hsu HT; Chang KY PLoS One; 2013; 8(4):e62283. PubMed ID: 23638024 [TBL] [Abstract][Full Text] [Related]
2. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus. Su MC; Chang CT; Chu CH; Tsai CH; Chang KY Nucleic Acids Res; 2005; 33(13):4265-75. PubMed ID: 16055920 [TBL] [Abstract][Full Text] [Related]
3. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Baranov PV; Henderson CM; Anderson CB; Gesteland RF; Atkins JF; Howard MT Virology; 2005 Feb; 332(2):498-510. PubMed ID: 15680415 [TBL] [Abstract][Full Text] [Related]
4. A general strategy to inhibiting viral -1 frameshifting based on upstream attenuation duplex formation. Hu HT; Cho CP; Lin YH; Chang KY Nucleic Acids Res; 2016 Jan; 44(1):256-66. PubMed ID: 26612863 [TBL] [Abstract][Full Text] [Related]
5. RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus. Ishimaru D; Plant EP; Sims AC; Yount BL; Roth BM; Eldho NV; Pérez-Alvarado GC; Armbruster DW; Baric RS; Dinman JD; Taylor DR; Hennig M Nucleic Acids Res; 2013 Feb; 41(4):2594-608. PubMed ID: 23275571 [TBL] [Abstract][Full Text] [Related]
6. Identification of Hepta- and Octo-Uridine stretches as sole signals for programmed +1 and -1 ribosomal frameshifting during translation of SARS-CoV ORF 3a variants. Wang X; Wong SM; Liu DX Nucleic Acids Res; 2006; 34(4):1250-60. PubMed ID: 16500894 [TBL] [Abstract][Full Text] [Related]
7. mRNA-Mediated Duplexes Play Dual Roles in the Regulation of Bidirectional Ribosomal Frameshifting. Huang WP; Cho CP; Chang KY Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518074 [TBL] [Abstract][Full Text] [Related]
8. Stem-loop structures can effectively substitute for an RNA pseudoknot in -1 ribosomal frameshifting. Yu CH; Noteborn MH; Pleij CW; Olsthoorn RC Nucleic Acids Res; 2011 Nov; 39(20):8952-9. PubMed ID: 21803791 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of ribosomal pausing during programmed -1 translational frameshifting. Lopinski JD; Dinman JD; Bruenn JA Mol Cell Biol; 2000 Feb; 20(4):1095-103. PubMed ID: 10648594 [TBL] [Abstract][Full Text] [Related]
10. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus. Gao F; Simon AE Nucleic Acids Res; 2016 Jan; 44(2):878-95. PubMed ID: 26578603 [TBL] [Abstract][Full Text] [Related]
11. Secondary structure and mutational analysis of the ribosomal frameshift signal of rous sarcoma virus. Marczinke B; Fisher R; Vidakovic M; Bloys AJ; Brierley I J Mol Biol; 1998 Nov; 284(2):205-25. PubMed ID: 9813113 [TBL] [Abstract][Full Text] [Related]
12. Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus. Kim KH; Lommel SA Virology; 1998 Oct; 250(1):50-9. PubMed ID: 9770419 [TBL] [Abstract][Full Text] [Related]
13. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Hansen TM; Reihani SN; Oddershede LB; Sørensen MA Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398 [TBL] [Abstract][Full Text] [Related]
14. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site. Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008 [TBL] [Abstract][Full Text] [Related]
15. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes. Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859 [TBL] [Abstract][Full Text] [Related]
16. Rational design of a synthetic mammalian riboswitch as a ligand-responsive -1 ribosomal frame-shifting stimulator. Lin YH; Chang KY Nucleic Acids Res; 2016 Oct; 44(18):9005-9015. PubMed ID: 27521370 [TBL] [Abstract][Full Text] [Related]
17. Identification of RNA pseudoknot-binding ligand that inhibits the -1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening. Park SJ; Kim YG; Park HJ J Am Chem Soc; 2011 Jul; 133(26):10094-100. PubMed ID: 21591761 [TBL] [Abstract][Full Text] [Related]
18. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Brierley I; Dos Ramos FJ Virus Res; 2006 Jul; 119(1):29-42. PubMed ID: 16310880 [TBL] [Abstract][Full Text] [Related]
19. Prokaryotic and eukaryotic translational machineries respond differently to the frameshifting RNA signal from plant or animal virus. Sung D; Kang H Virus Res; 2003 Apr; 92(2):165-70. PubMed ID: 12686425 [TBL] [Abstract][Full Text] [Related]
20. The SARS-CoV-2 Programmed -1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography. Roman C; Lewicka A; Koirala D; Li NS; Piccirilli JA ACS Chem Biol; 2021 Aug; 16(8):1469-1481. PubMed ID: 34328734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]