These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 23638112)
1. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis. Dhital S; Lin AH; Hamaker BR; Gidley MJ; Muniandy A PLoS One; 2013; 8(4):e62546. PubMed ID: 23638112 [TBL] [Abstract][Full Text] [Related]
2. Starch source influences dietary glucose generation at the mucosal α-glucosidase level. Lin AH; Lee BH; Nichols BL; Quezada-Calvillo R; Rose DR; Naim HY; Hamaker BR J Biol Chem; 2012 Oct; 287(44):36917-21. PubMed ID: 22988246 [TBL] [Abstract][Full Text] [Related]
3. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. Quezada-Calvillo R; Robayo-Torres CC; Opekun AR; Sen P; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Wattler S; Nehls MC; Sterchi EE; Nichols BL J Nutr; 2007 Jul; 137(7):1725-33. PubMed ID: 17585022 [TBL] [Abstract][Full Text] [Related]
4. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo. Lee BH; Yan L; Phillips RJ; Reuhs BL; Jones K; Rose DR; Nichols BL; Quezada-Calvillo R; Yoo SH; Hamaker BR PLoS One; 2013; 8(4):e59745. PubMed ID: 23565164 [TBL] [Abstract][Full Text] [Related]
5. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase. Lin AH; Ao Z; Quezada-Calvillo R; Nichols BL; Lin CT; Hamaker BR Carbohydr Polym; 2014 Oct; 111():33-40. PubMed ID: 25037326 [TBL] [Abstract][Full Text] [Related]
6. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087 [TBL] [Abstract][Full Text] [Related]
7. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Lee BH; Lin AH; Nichols BL; Jones K; Rose DR; Quezada-Calvillo R; Hamaker BR Mol Nutr Food Res; 2014 May; 58(5):1111-21. PubMed ID: 24442968 [TBL] [Abstract][Full Text] [Related]
8. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal α-glucosidases. Lee BH; Eskandari R; Jones K; Reddy KR; Quezada-Calvillo R; Nichols BL; Rose DR; Hamaker BR; Pinto BM J Biol Chem; 2012 Sep; 287(38):31929-38. PubMed ID: 22851177 [TBL] [Abstract][Full Text] [Related]
9. Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit. Lin AH; Nichols BL; Quezada-Calvillo R; Avery SE; Sim L; Rose DR; Naim HY; Hamaker BR PLoS One; 2012; 7(5):e35473. PubMed ID: 22563462 [TBL] [Abstract][Full Text] [Related]
10. Changes in the structure and enzyme binding of starches during in vitro enzymatic hydrolysis using mammalian mucosal enzyme mixtures. Jo M; Qi J; Du Z; Li Y; Shi YC Carbohydr Polym; 2024 Jul; 335():122070. PubMed ID: 38616092 [TBL] [Abstract][Full Text] [Related]
11. Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose. Quezada-Calvillo R; Robayo-Torres CC; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Sterchi EE; Baker SS; Nichols BL J Pediatr Gastroenterol Nutr; 2007 Jul; 45(1):32-43. PubMed ID: 17592362 [TBL] [Abstract][Full Text] [Related]
13. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content. Brewer LR; Cai L; Shi YC J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190 [TBL] [Abstract][Full Text] [Related]
14. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases. Lee BH; Hamaker BR Carbohydr Polym; 2017 Feb; 157():207-213. PubMed ID: 27987919 [TBL] [Abstract][Full Text] [Related]
15. Different inhibition properties of catechins on the individual subunits of mucosal α-glucosidases as measured by partially-purified rat intestinal extract. Lim J; Kim DK; Shin H; Hamaker BR; Lee BH Food Funct; 2019 Jul; 10(7):4407-4413. PubMed ID: 31282911 [TBL] [Abstract][Full Text] [Related]
16. Influence of molecular structure on the susceptibility of starch to α-amylase. Villas-Boas F; Yamauti Y; Moretti MMS; Franco CML Carbohydr Res; 2019 Jun; 479():23-30. PubMed ID: 31102972 [TBL] [Abstract][Full Text] [Related]
17. Fermentation in the small intestine contributes substantially to intestinal starch disappearance in calves. Gilbert MS; Pantophlet AJ; Berends H; Pluschke AM; van den Borne JJ; Hendriks WH; Schols HA; Gerrits WJ J Nutr; 2015 Jun; 145(6):1147-55. PubMed ID: 25878206 [TBL] [Abstract][Full Text] [Related]
18. A novel alpha-glucosidase from the moss Scopelophila cataractae. Yamasaki Y; Nakashima S; Konno H Acta Biochim Pol; 2007; 54(2):401-6. PubMed ID: 17502927 [TBL] [Abstract][Full Text] [Related]
19. Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice. Nichols BL; Quezada-Calvillo R; Robayo-Torres CC; Ao Z; Hamaker BR; Butte NF; Marini J; Jahoor F; Sterchi EE J Nutr; 2009 Apr; 139(4):684-90. PubMed ID: 19193815 [TBL] [Abstract][Full Text] [Related]
20. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors. Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]