BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 2363836)

  • 1. The ocular dominance and receptive field properties of visual cortex cells of cats following long-term transection of the optic chiasm and monocular deprivation during adulthood.
    Yinon U; Milgram A
    Behav Brain Res; 1990 May; 38(2):163-73. PubMed ID: 2363836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual hemispheric dominance induced in split brain cats during development: a model of deficient interhemispheric transfer derived from physiological evidence in single visual cortex cells.
    Yinon U
    Behav Brain Res; 1994 Oct; 64(1-2):97-110. PubMed ID: 7840897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-critical period plasticity of callosal transfer to visual cortex cells of cats following early conditioning of monocular deprivation and late optic chiasm transection.
    Yinon U; Hammer A
    Brain Res; 1990 May; 516(1):84-90. PubMed ID: 2364285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of corpus callosum for visual receptive fields of single neurons in cat superior colliculus.
    Antonini A; Berlucchi G; Marzi CA; Sprague JM
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):137-52. PubMed ID: 430108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interhemispheric influences on area 19 of the cat.
    Antonini A; Di Stefano M; Minciacchi D; Tassinari G
    Exp Brain Res; 1985; 59(1):171-84. PubMed ID: 4018195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual split brain and monocular deprivation in kittens: differentiation between the effects of disuse and of binocular competition in visual cortex cells.
    Yinon U; Chen M
    Behav Brain Res; 1988 Oct; 30(3):273-8. PubMed ID: 3178998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical cells' physiology following visual split brain in developing cats.
    Yinon U; Chen M; Milgram A; Gelerstein S
    Brain Res Bull; 1991 Nov; 27(5):553-71. PubMed ID: 1756374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Split brain acutely and chronically induced in cats causes ipsilateral eye dominance and reduced excitability of cells in the visual cortex.
    Yinon U; Chen M
    Metab Pediatr Syst Ophthalmol (1985); 1988; 11(1-2):86-96. PubMed ID: 3255877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of corpus callosum in functional organization of cat striate cortex.
    Payne BR; Pearson HE; Berman N
    J Neurophysiol; 1984 Sep; 52(3):570-94. PubMed ID: 6090610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual receptive field properties of cells innervated through the corpus callosum in the cat.
    Lepore F; Guillemot JP
    Exp Brain Res; 1982; 46(3):413-24. PubMed ID: 7095047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial resolution and contrast sensitivity of single neurons in area 19 of split-chiasm cats: a comparison with primary visual cortex.
    Tardif E; Richer L; Bergeron A; Lepore F; Guillemot JP
    Eur J Neurosci; 1997 Sep; 9(9):1929-39. PubMed ID: 9383216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Midsagittal transection of the optic chiasm and the corpus callosum induces visual split brain in cats: the effect on ocular dominance and responsiveness to cells in the visual cortex.
    Yinon U; Chen M; Hammer A
    Exp Neurol; 1988 Jul; 101(1):107-13. PubMed ID: 3391253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereopsis in the cat: behavioral demonstration and underlying mechanisms.
    Ptito M; Lepore F; Guillemot JP
    Neuropsychologia; 1991; 29(6):443-64. PubMed ID: 1944855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of visual cortical cells of the intact and the deafferented hemisphere of unilateral optic tract sectioned acute and chronic adult cats.
    Podell M; Yinon U; Hammer A
    Exp Brain Res; 1984; 55(1):91-6. PubMed ID: 6086374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The deafferented visual cortex and interhemispheric relationships: a physiological approach.
    Yinon U; Podell M
    Metab Pediatr Syst Ophthalmol (1985); 1988; 11(1-2):100-10. PubMed ID: 3076606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deafferentation of the visual cortex: the effect on cortical cells in normal and in early monocularly deprived cats.
    Yinon U; Podell M; Goshen S
    Exp Neurol; 1984 Mar; 83(3):486-94. PubMed ID: 6698154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of early monocular deprivation on response properties and afferents of nucleus of the optic tract in the ferret.
    Sengpiel F; Klauer S; Hoffmann KP
    Exp Brain Res; 1990; 83(1):190-9. PubMed ID: 2073938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects on binocular activation of cells in visual cortex of the cat following the transection of the optic tract.
    Lepore F; Samson A; Molotchnikoff S
    Exp Brain Res; 1983; 50(2-3):392-6. PubMed ID: 6641873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid restoration of functional input to the visual cortex of the cat after brief monocular deprivation.
    Blakemore C; Hawken MJ
    J Physiol; 1982 Jun; 327():463-87. PubMed ID: 7120147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberrant visual projections in the Siamese cat.
    Hubel DH; Wiesel TN
    J Physiol; 1971 Oct; 218(1):33-62. PubMed ID: 5130620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.