These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 23638635)
1. A hybrid seasonal prediction model for tuberculosis incidence in China. Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635 [TBL] [Abstract][Full Text] [Related]
2. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model. Azeez A; Obaromi D; Odeyemi A; Ndege J; Muntabayi R Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27472353 [TBL] [Abstract][Full Text] [Related]
3. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan. Kuan MM PeerJ; 2022; 10():e13117. PubMed ID: 36164599 [TBL] [Abstract][Full Text] [Related]
4. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system. Zuo Z; Wang M; Cui H; Wang Y; Wu J; Qi J; Pan K; Sui D; Liu P; Xu A BMC Public Health; 2020 Aug; 20(1):1284. PubMed ID: 32843011 [TBL] [Abstract][Full Text] [Related]
6. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Liao Z; Zhang X; Zhang Y; Peng D Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907 [TBL] [Abstract][Full Text] [Related]
7. A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China. Zhao D; Zhang R J Infect Dev Ctries; 2023 Nov; 17(11):1581-1590. PubMed ID: 38064398 [TBL] [Abstract][Full Text] [Related]
8. Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China. Zheng Y; Zhang L; Wang L; Rifhat R BMC Infect Dis; 2020 Apr; 20(1):300. PubMed ID: 32321419 [TBL] [Abstract][Full Text] [Related]
9. Time-series analysis of tuberculosis from 2005 to 2017 in China. Wang H; Tian CW; Wang WM; Luo XM Epidemiol Infect; 2018 Jun; 146(8):935-939. PubMed ID: 29708082 [TBL] [Abstract][Full Text] [Related]
10. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. Mao Q; Zhang K; Yan W; Cheng C J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253 [TBL] [Abstract][Full Text] [Related]
11. Application of a combined model with seasonal autoregressive integrated moving average and support vector regression in forecasting hand-foot-mouth disease incidence in Wuhan, China. Zou JJ; Jiang GF; Xie XX; Huang J; Yang XB Medicine (Baltimore); 2019 Feb; 98(6):e14195. PubMed ID: 30732135 [TBL] [Abstract][Full Text] [Related]
12. Predicting the incidence of rifampicin resistant tuberculosis in Yunnan, China: a seasonal time series analysis based on routine surveillance data. Yang YB; Liu LL; Chen JO; Li L; Qiu YB; Wu W; Xu L BMC Infect Dis; 2024 Aug; 24(1):835. PubMed ID: 39152374 [TBL] [Abstract][Full Text] [Related]
13. Research on hand, foot and mouth disease incidence forecasting using hybrid model in mainland China. Zhao D; Zhang H; Zhang R; He S BMC Public Health; 2023 Mar; 23(1):619. PubMed ID: 37003988 [TBL] [Abstract][Full Text] [Related]
14. A hybrid model for short-term bacillary dysentery prediction in Yichang City, China. Yan W; Xu Y; Yang X; Zhou Y Jpn J Infect Dis; 2010 Jul; 63(4):264-70. PubMed ID: 20657066 [TBL] [Abstract][Full Text] [Related]
15. Time series analysis-based seasonal autoregressive fractionally integrated moving average to estimate hepatitis B and C epidemics in China. Wang YB; Qing SY; Liang ZY; Ma C; Bai YC; Xu CJ World J Gastroenterol; 2023 Nov; 29(42):5716-5727. PubMed ID: 38075851 [TBL] [Abstract][Full Text] [Related]
16. A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China. Zhao R; Liu J; Zhao Z; Zhai M; Ren H; Wang X; Li Y; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Oct; 23(1):665. PubMed ID: 37805543 [TBL] [Abstract][Full Text] [Related]
17. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq. Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036 [TBL] [Abstract][Full Text] [Related]
18. Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China. Li J; Li Y; Ye M; Yao S; Yu C; Wang L; Wu W; Wang Y Infect Drug Resist; 2021; 14():1941-1955. PubMed ID: 34079304 [TBL] [Abstract][Full Text] [Related]
19. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study. Wang YW; Shen ZZ; Jiang Y BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084 [TBL] [Abstract][Full Text] [Related]
20. A Combined Model of SARIMA and Prophet Models in Forecasting AIDS Incidence in Henan Province, China. Luo Z; Jia X; Bao J; Song Z; Zhu H; Liu M; Yang Y; Shi X Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]