These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23638841)

  • 1. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste.
    Kang DH; Chen M; Ogunseitan OA
    Environ Sci Technol; 2013 May; 47(10):5495-503. PubMed ID: 23638841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles.
    Shafique M; Akbar A; Rafiq M; Azam A; Luo X
    Waste Manag Res; 2023 Feb; 41(2):376-388. PubMed ID: 36373335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.
    Peng C; Hamuyuni J; Wilson BP; Lundström M
    Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries.
    Yu Y; Chen B; Huang K; Wang X; Wang D
    Int J Environ Res Public Health; 2014 Mar; 11(3):3185-98. PubMed ID: 24646862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification.
    Lim SR; Kang D; Ogunseitan OA; Schoenung JM
    Environ Sci Technol; 2011 Jan; 45(1):320-7. PubMed ID: 21138290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Economic and environmental characterization of an evolving Li-ion battery waste stream.
    Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ
    J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circularity of Lithium-Ion Battery Materials in Electric Vehicles.
    Dunn J; Slattery M; Kendall A; Ambrose H; Shen S
    Environ Sci Technol; 2021 Apr; 55(8):5189-5198. PubMed ID: 33764763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental trade-offs and externalities of electrochemical-based batteries: Quantitative analysis between lithium-ion and vanadium redox flow units.
    Tsai WS; Huang C; Huang CC; Yang CC; Lee M
    J Environ Manage; 2023 Jan; 326(Pt B):116807. PubMed ID: 36436249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.
    Jha MK; Kumari A; Jha AK; Kumar V; Hait J; Pandey BD
    Waste Manag; 2013 Sep; 33(9):1890-7. PubMed ID: 23773705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts.
    Wang S; Wang C; Lai F; Yan F; Zhang Z
    Waste Manag; 2020 Feb; 102():122-130. PubMed ID: 31671359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of electronic waste toxicity: Trends in innovation and regulation.
    Chen M; Ogunseitan OA; Wang J; Chen H; Wang B; Chen S
    Environ Int; 2016; 89-90():147-54. PubMed ID: 26854858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A material flow of lithium batteries in Taiwan.
    Chang TC; You SJ; Yu BS; Yao KF
    J Hazard Mater; 2009 Apr; 163(2-3):910-5. PubMed ID: 18723278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental characteristics comparison of Li-ion batteries and Ni-MH batteries under the uncertainty of cycle performance.
    Yu Y; Wang X; Wang D; Huang K; Wang L; Bao L; Wu F
    J Hazard Mater; 2012 Aug; 229-230():455-60. PubMed ID: 22763226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.