These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23638939)

  • 1. Effect of functionalized gold nanoparticles on floating lipid bilayers.
    Tatur S; Maccarini M; Barker R; Nelson A; Fragneto G
    Langmuir; 2013 Jun; 29(22):6606-14. PubMed ID: 23638939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers.
    Gao J; Zhang O; Ren J; Wu C; Zhao Y
    Langmuir; 2016 Feb; 32(6):1601-10. PubMed ID: 26794292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascading Effects of Nanoparticle Coatings: Surface Functionalization Dictates the Assemblage of Complexed Proteins and Subsequent Interaction with Model Cell Membranes.
    Melby ES; Lohse SE; Park JE; Vartanian AM; Putans RA; Abbott HB; Hamers RJ; Murphy CJ; Pedersen JA
    ACS Nano; 2017 Jun; 11(6):5489-5499. PubMed ID: 28482159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers.
    Lolicato F; Joly L; Martinez-Seara H; Fragneto G; Scoppola E; Baldelli Bombelli F; Vattulainen I; Akola J; Maccarini M
    Small; 2019 Jun; 15(23):e1805046. PubMed ID: 31012268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles.
    Quan X; Zhao D; Zhou J
    Phys Chem Chem Phys; 2021 Oct; 23(41):23526-23536. PubMed ID: 34642720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles.
    Shen Z; Baker W; Ye H; Li Y
    Nanoscale; 2019 Apr; 11(15):7371-7385. PubMed ID: 30938720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of gold nanoparticles into bilayer structures via adaptive surface chemistry.
    Lee HY; Shin SH; Abezgauz LL; Lewis SA; Chirsan AM; Danino DD; Bishop KJ
    J Am Chem Soc; 2013 Apr; 135(16):5950-3. PubMed ID: 23565704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study.
    Gupta R; Rai B
    Sci Rep; 2017 Mar; 7():45292. PubMed ID: 28349970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function.
    Foreman-Ortiz IU; Liang D; Laudadio ED; Calderin JD; Wu M; Keshri P; Zhang X; Schwartz MP; Hamers RJ; Rotello VM; Murphy CJ; Cui Q; Pedersen JA
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27854-27861. PubMed ID: 33106430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free Energy of Bare and Capped Gold Nanoparticles Permeating through a Lipid Bilayer.
    Mhashal AR; Roy S
    Chemphyschem; 2016 Nov; 17(21):3504-3514. PubMed ID: 27595236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces.
    Melby ES; Allen C; Foreman-Ortiz IU; Caudill ER; Kuech TR; Vartanian AM; Zhang X; Murphy CJ; Hernandez R; Pedersen JA
    Langmuir; 2018 Sep; 34(36):10793-10805. PubMed ID: 30102857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size.
    Laaksonen T; Ahonen P; Johans C; Kontturi K
    Chemphyschem; 2006 Oct; 7(10):2143-9. PubMed ID: 16969881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins.
    Van Lehn RC; Alexander-Katz A
    J Phys Chem B; 2014 Nov; 118(44):12586-98. PubMed ID: 25347475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.
    Lin J; Zhang H; Chen Z; Zheng Y
    ACS Nano; 2010 Sep; 4(9):5421-9. PubMed ID: 20799717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Hydrophobic Gold Nanoparticles on Structure and Fluidity of SOPC Lipid Membranes.
    Santhosh PB; Tenev T; Šturm L; Ulrih NP; Genova J
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers.
    Luchini A; Gerelli Y; Fragneto G; Nylander T; Pálsson GK; Appavou MS; Paduano L
    Colloids Surf B Biointerfaces; 2017 Mar; 151():76-87. PubMed ID: 27987458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase segregation of untethered zwitterionic model lipid bilayers observed on mercaptoundecanoic-acid-modified gold by AFM imaging and force mapping.
    Ip S; Li JK; Walker GC
    Langmuir; 2010 Jul; 26(13):11060-70. PubMed ID: 20387821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.