These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23638941)

  • 1. NMR relaxation in proteins with fast internal motions and slow conformational exchange: model-free framework and Markov state simulations.
    Xia J; Deng NJ; Levy RM
    J Phys Chem B; 2013 Jun; 117(22):6625-34. PubMed ID: 23638941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling conformational ensembles of slow functional motions in Pin1-WW.
    Morcos F; Chatterjee S; McClendon CL; Brenner PR; López-Rendón R; Zintsmaster J; Ercsey-Ravasz M; Sweet CR; Jacobson MP; Peng JW; Izaguirre JA
    PLoS Comput Biol; 2010 Dec; 6(12):e1001015. PubMed ID: 21152000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring free energy landscapes of large conformational changes: molecular dynamics with excited normal modes.
    Costa MG; Batista PR; Bisch PM; Perahia D
    J Chem Theory Comput; 2015 Jun; 11(6):2755-67. PubMed ID: 26575568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two hydrophobic methyl clusters in HIV-1 protease by NMR spin relaxation in solution.
    Ishima R; Louis JM; Torchia DA
    J Mol Biol; 2001 Jan; 305(3):515-21. PubMed ID: 11152609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the dynamics of HIV-1 protease: a kinetic network model constructed from atomistic simulations.
    Deng NJ; Zheng W; Gallicchio E; Levy RM
    J Am Chem Soc; 2011 Jun; 133(24):9387-94. PubMed ID: 21561098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing.
    Sadiq SK; De Fabritiis G
    Proteins; 2010 Nov; 78(14):2873-85. PubMed ID: 20715057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility and function in HIV-1 protease.
    Nicholson LK; Yamazaki T; Torchia DA; Grzesiek S; Bax A; Stahl SJ; Kaufman JD; Wingfield PT; Lam PY; Jadhav PK
    Nat Struct Biol; 1995 Apr; 2(4):274-80. PubMed ID: 7796263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations.
    Jenwitheesuk E; Samudrala R
    BMC Struct Biol; 2003 Apr; 3():2. PubMed ID: 12675950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.
    Piana S; Carloni P; Parrinello M
    J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations.
    Ishima R; Kurt Yilmaz N; Schiffer CA
    J Biomol NMR; 2019 Jul; 73(6-7):365-374. PubMed ID: 31243634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.
    Liu Q; Shi C; Yu L; Zhang L; Xiong Y; Tian C
    Biochem Biophys Res Commun; 2015 Feb; 457(3):467-72. PubMed ID: 25600810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motional clustering in supra-τ
    Kolloff C; Mazur A; Marzinek JK; Bond PJ; Olsson S; Hiller S
    J Magn Reson; 2022 May; 338():107196. PubMed ID: 35367892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR.
    Deshmukh L; Tugarinov V; Louis JM; Clore GM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9855-E9862. PubMed ID: 29087351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic characterization of the critical step in HIV-1 protease maturation.
    Sadiq SK; Noé F; De Fabritiis G
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20449-54. PubMed ID: 23184967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population shuffling between ground and high energy excited states.
    Sabo TM; Trent JO; Lee D
    Protein Sci; 2015 Nov; 24(11):1714-9. PubMed ID: 26316263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
    Krushelnitsky A; Reichert D; Saalwächter K
    Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein conformational dynamics in the mechanism of HIV-1 protease catalysis.
    Torbeev VY; Raghuraman H; Hamelberg D; Tonelli M; Westler WM; Perozo E; Kent SB
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):20982-7. PubMed ID: 22158985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics.
    Philippopoulos M; Mandel AM; Palmer AG; Lim C
    Proteins; 1997 Aug; 28(4):481-93. PubMed ID: 9261865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-State NMR Provides Evidence for Small-Amplitude Slow Domain Motions in a Multispanning Transmembrane α-Helical Protein.
    Good D; Pham C; Jagas J; Lewandowski JR; Ladizhansky V
    J Am Chem Soc; 2017 Jul; 139(27):9246-9258. PubMed ID: 28613900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.